Advertisement

A New Bound for Pure Greedy Hot Potato Routing

  • Manfred Kunde
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4393)

Abstract

We present a new bound for pure greedy hot potato routing on n ×n mesh-connected arrays and n ×n tori. For permutation problems the bound is \(O(n \sqrt{n} \log n)\) steps which improves the for a long time known bound of O(n 2). For the more general link-limited k-destination routing problem the bound is \(O(n \sqrt{kn} \log n)\). The bound also holds for restricted pure greedy hot potato routing on n ×n meshes with diagonals. The bound could be derived by a new technique where packets may have several identities.

Keywords

Greedy Algorithm Normal Packet Forward Packet Direct Neighbor Outgoing Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bar64]
    Baran, P.: On distributed communication networks. IEEE Trans. Commun. Syst. 12, 1–9 (1964)CrossRefGoogle Scholar
  2. [BES95]
    Ben-Aroya, I., Eilam, T., Schuster, A.: Greedy hot-potato routing on the two-dimensional mesh. Distrib. Comput. 9, 3–19 (1995)CrossRefGoogle Scholar
  3. [BH85]
    Borodin, A., Hopcroft, J.E.: Routing, merging, and sorting on parallel models of computation. J. Comput. Syst. Sci. 30, 130–145 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [BHS94]
    Ben-Dor, A., Halevi, S., Schuster, A.: Potential function analysis of greedy hot-potato routing. In: Symposium on Principles of Distributed Computing (PODC ’94), pp. 225–234. ACM Press, New York (1994)CrossRefGoogle Scholar
  5. [BHS98]
    Ben-Dor, A., Halevi, S., Schuster, A.: Potential function analysis of greedy hot-potato routing. Theory Comput. Syst. 31, 41–61 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [BHW00]
    Busch, C., Herlihy, M., Wattenhofer, R.: Randomized greedy hot-potato routing. In: Proc. 11th Ann. ACM-SIAM Symposium on Discrete Algorithms (SODA’2000), San Francisco, CA, pp. 458–466. SIAM, Philadelphia (2000)Google Scholar
  7. [BHW00]
    Busch, C., Herlihy, M., Wattenhofer, R.: Hard-potato routing. In: Proc. 32nd Ann. ACM Symp. on the Theory of Computing (STOC’2000), Portland, OR, pp. 278–285. ACM Press, New York (2000)Google Scholar
  8. [BRS97]
    Borodin, A., Rabani, Y., Schieber, B.: Deterministic many-to-many hot potato routing. IEEE Trans. Parallel Distrib. Syst. 8, 587–596 (1997)CrossRefGoogle Scholar
  9. [FR92]
    Feige, U., Raghavan, P.: Exact analysis of hot-potato routing. In: Proc. 33rd Ann. Symp. Foundations of Computer Science (FOCS’92), Pittsburgh, PA, pp. 553–562. IEEE Computer Society Press, Los Alamitos (1992)CrossRefGoogle Scholar
  10. [Hil85]
    Hillis, W.D.: The Connection Machine. MIT Press, Cambridge (1985)Google Scholar
  11. [KKR]
    Kaklamanis, C., Krizanc, D., Rao, S.: Hot-potato routing on processor arrays. In: Proc. 5th Annual ACM Symp. on Parallel Algorithms and Architectures (SPAA’93), pp. 273–282. ACM Press, New York (1993)Google Scholar
  12. [KLS]
    Kaufmann, M., Lauer, H., Schröder, H.: Fast deterministic hot-potato routing on meshes. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 333–541. Springer, Heidelberg (1994)Google Scholar
  13. [NS95]
    Newman, I., Schuster, A.: Hot-potato algorithms for permutation routing. IEEE Trans. Parallel Distrib. Syst. 6, 1168–1176 (1995)CrossRefGoogle Scholar
  14. [Sei92]
    Seitz, C.L.: Mosaic C: an experimental, fine-grain multicomputer. In: Bensoussan, A., Verjus, J.-P. (eds.) INRIA 1992. LNCS, vol. 653, pp. 69–85. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  15. [Smi81]
    Smith, B.J.: Architecture and applications of the HEP multiprocessor computer. Soc. Photocopti. Instrum. Eng. 298, 241–248 (1981)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Manfred Kunde
    • 1
  1. 1.Technical University of Ilmenau, Institute for Theoretical Computer Science 

Personalised recommendations