New Approximation Algorithms for Minimum Cycle Bases of Graphs

  • Telikepalli Kavitha
  • Kurt Mehlhorn
  • Dimitrios Michail
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4393)

Abstract

We consider the problem of computing an approximate minimum cycle basis of an undirected edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over \(\mathbb{F}_2\) generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction.

We present two new algorithms to compute an approximate minimum cycle basis. For any integer k ≥ 1, we give (2k − 1)-approximation algorithms with expected running time O(kmn1 + 2/k + mn(1 + 1/k)(ω − 1)) and deterministic running time O( n3 + 2/k ), respectively. Here ω is the best exponent of matrix multiplication. It is presently known that ω < 2.376. Both algorithms are o( mω) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Θ(mω) bound.

We also present a 2-approximation algorithm with \(O(m^{\omega}\sqrt{n\log n})\) expected running time, a linear time 2-approximation algorithm for planar graphs and an O(n3) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stepanec, G.F.: Basis systems of vector cycles with extremal properties in graphs. Uspekhi Mat. Nauk 19, 171–175 (1964)MathSciNetMATHGoogle Scholar
  2. 2.
    Horton, J.D.: A polynomial-time algorithm to find a shortest cycle basis of a graph. SIAM Journal of Computing 16, 359–366 (1987)CrossRefMathSciNetGoogle Scholar
  3. 3.
    de Pina, J.: Applications of Shortest Path Methods. PhD thesis, University of Amsterdam, Netherlands (1995)Google Scholar
  4. 4.
    Golynski, A., Horton, J.D.: A polynomial time algorithm to find the minimum cycle basis of a regular matroid. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Berger, F., Gritzmann, P., de Vries, S.: Minimum cycle basis for network graphs. Algorithmica 40(1), 51–62 (2004)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Kavitha, T., et al.: A faster algorithm for minimum cycle basis of graphs. In: Díaz, J., et al. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 846–857. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Huber, M.: Implementation of algorithms for sparse cycle bases of graphs. Technical report, Technische Universität München (2002), http://www-m9.ma.tum.de/dm/cycles/mhuber
  8. 8.
    Kreisbasenbibliothek CyBaL (2004), http://www-m9.ma.tum.de/dm/cycles/cybal
  9. 9.
    Mehlhorn, K., Michail, D.: Implementing minimum cycle basis algorithms. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 32–43. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Swamy, M.N.S., Thulasiraman, K.: Graphs, Networks, and Algorithms. John Wiley & Sons, New York (1981)MATHGoogle Scholar
  11. 11.
    Cassell, A.C., Henderson, J.C., Ramachandran, K.: Cycle bases of minimal measure for the structural analysis of skeletal structures by the flexibility method. Proc. Royal Society of London Series A 350, 61–70 (1976)CrossRefMATHGoogle Scholar
  12. 12.
    Gleiss, P.M.: Short Cycles, Minimum Cycle Bases of Graphs from Chemistry and Biochemistry. PhD thesis, Fakultät Für Naturwissenschaften und Mathematik der Universität Wien (2001)Google Scholar
  13. 13.
    Tewari, G., Gotsman, C., Gortler, S.J.: Meshing genus-1 point clouds using discrete one-forms. Computers and Graphics, to appear (2006)Google Scholar
  14. 14.
    Coppersmith, D., Winograd, S.: Matrix multiplications via arithmetic progressions. Journal of Symb. Comput. 9, 251–280 (1990)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Kavitha, T., Mehlhorn, K.: A polynomial time algorithm for minimum cycle basis in directed graphs. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 654–665. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Liebchen, C., Rizzi, R.: A greedy approach to compute a minimum cycle basis of a directed graph. Inf. Process. Lett. 94(3), 107–112 (2005)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Hariharan, R., Kavitha, T., Mehlhorn, K.: A faster deterministic algorithm for minimum cycle basis in directed graphs. In: Bugliesi, M., et al. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 250–261. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Kavitha, T.: An Õ(m 2 n) randomized algorithm to compute a minimum cycle basis of a directed graph. In: Caires, L., et al. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 273–284. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Althöfer, I., et al.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Thorup, M., Zwick, U.: Approximate distance oracles. In: ACM Symposium on Theory of Computing, pp. 183–192. ACM Press, New York (2001)Google Scholar
  21. 21.
    Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of 13th ACM Symposium on Parallel Algorithms and Architecture, pp. 1–10. ACM Press, New York (2001)Google Scholar
  22. 22.
    Apostol, T.M.: Introduction to Analytic Number Theory. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Telikepalli Kavitha
    • 1
  • Kurt Mehlhorn
    • 2
  • Dimitrios Michail
    • 2
  1. 1.Indian Institute of Science, BangaloreIndia
  2. 2.Max-Planck-Institut für Informatik, SaarbrückenGermany

Personalised recommendations