Advertisement

Compact Forbidden-Set Routing

  • Bruno Courcelle
  • Andrew Twigg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4393)

Abstract

We study labelling schemes for X-constrained path problems. Given a graph (V,E) and \(X\subseteq V\), a path is X-constrained if all intermediate vertices avoid X. We study the problem of assigning labels J(x) to vertices so that given {J(x):x ∈ X} for any \(X\subseteq V\), we can route on the shortest X-constrained path between x,y ∈ X. This problem is motivated by Internet routing, where the presence of routing policies means that shortest-path routing is not appropriate. For graphs of tree width k, we give a routing scheme using routing tables of size O(k 2log2 n). We introduce m-clique width, generalizing clique width, to show that graphs of m-clique width k also have a routing scheme using size O(k 2log2 n) tables.

Keywords

Algorithms labelling schemes compact routing. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA ’01: Proceedings of the thirteenth annual ACM symposium on Parallel algorithms and architectures, Crete Island, Greece, pp. 1–10. ACM Press, New York (2001), doi:10.1145/378580.378581CrossRefGoogle Scholar
  2. 2.
    Varadhan, K., Govindan, R., Estrin, D.: Persistent route oscillations in inter-domain routing. Technical report, USC/ISI (1996)Google Scholar
  3. 3.
    Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdomain routing. IEEE/ACM Trans. Netw. 10(2), 232–243 (2002)CrossRefGoogle Scholar
  4. 4.
    Feigenbaum, J., et al.: Subjective-cost policy routing. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 174–183. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Courcelle, B., Vanicat, R.: Query efficient implementation of graphs of bounded clique-width. Discrete Applied Mathematics 131(1), 129–150 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gupta, A., Kumar, A., Thorup, M.: Tree based mpls routing. In: SPAA ’03: Proceedings of the fifteenth annual ACM symposium on Parallel algorithms and architectures, San Diego, California, USA, pp. 193–199. ACM Press, New York (2003), doi:10.1145/777412.777443CrossRefGoogle Scholar
  7. 7.
    Courcelle, B.: Graph decompositions. Chapter of a book in preparation (2006), Available at http://www.labri.fr/perso/courcell/Textes/ChapitreDecArbos.pdf
  8. 8.
    Arnborg, S., et al.: An algebraic theory of graph reduction. J. ACM 40(5), 1134–1164 (1993), doi:10.1145/174147.169807MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bodlaender, H.L.: NC-algorithms for graphs with small treewidth. In: van Leeuwen, J. (ed.) WG 1988. LNCS, vol. 344, pp. 1–10. Springer, Heidelberg (1989)Google Scholar
  10. 10.
    Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Wanke, E.: k-nlc graphs and polynomial algorithms. Discrete Applied Mathematics 54(2-3), 251–266 (1994)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1-3), 77–114 (2000)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Discret. Math. 5(4), 596–603 (1992), doi:10.1137/0405049MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Fellows, M.R., et al.: Clique-width minimization is np-hard. In: STOC 2006, Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, Seattle, Washington, ACM Press, New York (2006)Google Scholar
  15. 15.
    Oum, S.-i.: Approximating rank-width and clique-width quickly. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 49–58. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Bruno Courcelle
    • 1
  • Andrew Twigg
    • 2
  1. 1.LaBRI, Bordeaux 1 University and CNRS 
  2. 2.Computer Laboratory, Cambridge University 

Personalised recommendations