An Exponential Lower Bound for Prefix Gröbner Bases in Free Monoid Rings

  • Andrea Sattler-Klein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4393)

Abstract

We show by an example that the number of reduction steps needed to compute a prefix Gröbner basis in a free monoid ring by interreduction can in fact be exponential in the size of the input. This answers an open question posed by Zeckzer in [Ze00].

Keywords

algorithms computational complexity rewriting  Gröbner bases. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AcKr06]
    Ackermann, P., Kreuzer, M.: Gröbner Basis Cryptosystems. In: AAECC 17, pp. 173–194 (2006)Google Scholar
  2. [MaRe93]
    Madlener, K., Reinert, B.: On Gröbner Bases in Monoid and Group Rings. In: Proc. ISSAC’93, pp. 54–263. ACM Press, New York (1993)Google Scholar
  3. [Mo86]
    Mora, T.: Gröbner Bases for Non-Commutative Polynomial Rings. In: Calmet, J. (ed.) AAECC 1985. LNCS, vol. 229, pp. 353–362. Springer, Heidelberg (1986)Google Scholar
  4. [Mo94]
    Mora, T.: An Introduction to Commutative and Noncommutative Gröbner Bases. Theoretical Computer Science 134, 131–173 (1994)MATHCrossRefMathSciNetGoogle Scholar
  5. [Re95]
    Reinert, B.: On Gröbner Bases in Monoid and Group Rings. PhD thesis, Universität Kaiserslautern (1995)Google Scholar
  6. [ReZe98]
    Reinert, B., Zeckzer, D.: MRC - A System for Computing Gröbner Bases in Monoid and Group Rings. Presented at the 6th Rhine Workshop on Computer Algebra. Sankt Augustin (1998)Google Scholar
  7. [ReZe99]
    Reinert, B., Zeckzer, D.: MRC - Data Structures and Algorithms for Computing in Monoid and Group Rings. Applicable Algebra and Engineering, Communications and Computing 10(1), 41–78 (1999)MATHCrossRefMathSciNetGoogle Scholar
  8. [Sa07]
    Sattler-Klein, A.: An Exponential Lower Bound for Prefix Gröbner Bases in Free Monoid Rings. Internal Report, Universität Kaiserslautern, to appear in (2007)Google Scholar
  9. [Ze00]
    Zeckzer, D.: Implementation, Applications, and Complexity of Prefix Gröbner Bases in Monoid and Group Rings. PhD thesis, Universität Kaiserslautern (2000)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Andrea Sattler-Klein
    • 1
  1. 1.Technische Universität Kaiserslautern, Fachbereich Informatik, Postfach 3049, 67653 KaiserslauternGermany

Personalised recommendations