Schematisation of Tree Drawings

  • Joachim Gudmundsson
  • Marc van Kreveld
  • Damian Merrick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4372)


Given a tree T spanning a set of points \({\mathcal S}\) in the plane, we study the problem of drawing T using only line segments aligned with a fixed set of directions \({\mathcal C}\). The vertices in the drawing must lie within a given distance r of each original point \(p \in {\mathcal S}\), and an objective function counting the number of bends must be minimised. We propose five versions of this problem using different objective functions, and algorithms to solve them. This work has potential applications in geographic map schematisation and metro map layout.


  1. 1.
    Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. Journal of Comp. and Sys. Sciences 7(4), 448–461 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Brandes, U., Eiglsperger, M., Kaufmann, M., Wagner, D.: Sketch-driven orthogonal graph drawing. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 1–11. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Cabello, S., de Berg, M., van Kreveld, M.: Schematization of networks. Computational Geometry and Applications 30, 223–238 (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cabello, S., van Kreveld, M.: Approximation algorithms for aligning points. Algorithmica 37, 211–232 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Eiglsperger, M., Fekete, S.P., Klau, G.W.: Orthogonal graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 121–171. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In: Proc. ACM-SIAM Symp. Discrete Alg., pp. 434–443. ACM Press, New York (1990)Google Scholar
  7. 7.
    Hong, S.-H., Merrick, D., do Nascimento, H.A.D.: The metro map layout problem. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 482–491. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Lauther, U., Stübinger, A.: Generating schematic cable plans using springembedder methods. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 465–466. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Lovász, L., Plummer, M.D.: Matching Theory. Elsevier, Amsterdam (1986)zbMATHGoogle Scholar
  10. 10.
    Merrick, D., Gudmundsson, J.: Path simplification for metro map layout. Submitted to Graph Drawing (June 2006)Google Scholar
  11. 11.
    Neyer, G.: Line simplification in restricted orientations. In: Proc. of the 6th International workshop on Algorithms and Data Structures, pp. 13–24 (1999)Google Scholar
  12. 12.
    Nöllenburg, M., Wolff, A.: A mixed-integer program for drawing high-quality metro maps. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 321–333. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Stott, J.M., Rodgers, P.: Metro map layout using multicriteria optimization. In: Proc. Information Visualisation, pp. 355–362 (2004)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Joachim Gudmundsson
    • 1
  • Marc van Kreveld
    • 2
  • Damian Merrick
    • 1
    • 3
  1. 1.National ICT Australia, SydneyAustralia
  2. 2.Department of Computer Science, Utrecht UniversityThe Netherlands
  3. 3.School of Information Technologies, University of SydneyAustralia

Personalised recommendations