Angle and Distance Constraints on Tree Drawings

  • Ulrik Brandes
  • Barbara Schlieper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4372)

Abstract

We consider planar drawings of trees that must satisfy constraints on the angles between edges incident to a common vertex and on the distances between adjacent vertices. These requirements arise naturally in many applications such as drawing phylogenetic trees or route maps. For straight-line drawings, either class of constraints is always realizable, whereas their combination is not in general. We show that straight-line realizability can be tested in linear time, and give an algorithm that produces drawing satisfying both groups of constraints together in a model where edges are represented as polylines with at most two bends per edge or as continuously differentiable curves.

References

  1. 1.
    Bachmaier, C., Brandes, U., Schlieper, B.: Drawing phylogenetic trees. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1110–1121. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Brandes, U., Shubina, G., Tamassia, R.: Improving angular resolution in visualizations of geographic networks. In: Data Visualization: Proc. 2nd Joint EUROGRAPHICS and IEEE TCVG Symp. Visualization, VisSym, pp. 23–33. Springer, 29–30 (2000)Google Scholar
  3. 3.
    Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6(5), 485–524 (1991)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cheng, C.C., Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Drawing planar graphs with circular arcs. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 117–126. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Eades, P., Wormald, N.C.: Fixed edge-length graph drawing is \(\mathcal{NP}\)-hard. Discrete Applied Mathematics 28, 111–134 (1990)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Finkel, B., Tamassia, R.: Curvilinear Graph Drawing Using the Force-Directed Method. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 448–453. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Garg, A.: On drawing angle graphs. In: Tamassia, R., Tollis, I(Y.) G. (eds.) GD 1994. LNCS, vol. 894, pp. 84–95. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)MATHMathSciNetGoogle Scholar
  9. 9.
    Melançon, G., Hermann, I.: Circular drawing of rooted trees. Technical report 9817, Reports of the Center for Mathematics and Computer Science (1998)Google Scholar
  10. 10.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 263–274. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Ulrik Brandes
    • 1
  • Barbara Schlieper
    • 1
  1. 1.Department of Computer & Information Science, University of Konstanz 

Personalised recommendations