Biclique Edge Cover Graphs and Confluent Drawings

  • Michael Hirsch
  • Henk Meijer
  • David Rappaport
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4372)


Confluent drawing is a technique that allows some non-planar graphs to be visualized in a planar way. This approach merges edges together, drawing groups of them as single tracks, similar to train tracks. In the general case, producing confluent drawings automatically has proven quite difficult. We introduce the biclique edge cover graph that represents a graph G as an interconnected set of cliques and bicliques. We do this in such a way as to permit a straightforward transformation to a confluent drawing of G. Our result is a new sufficient condition for confluent planarity and an additional algorithmic approach for generating confluent drawings. We give some experimental results gauging the performance of existing confluent drawing heuristics.


Planar Graph Smooth Curve Maximal Clique Smooth Curf Train Track 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Devine, J.: Confluent graphs. Master’s thesis, Queen’s University (2005)Google Scholar
  2. 2.
    Hui, P., Schaefer, M., Štefankovič, D.: Train tracks and confluent drawings. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 318–328. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Newbery, F.J.: Edge concentration: a method for clustering directed graphs. In: Proc. 2nd Int. Works. on Soft. configuration management, Princeton, New Jersey, United States, pp. 76–85. ACM Press, New York (1989), doi:10.1145/72910.73350CrossRefGoogle Scholar
  4. 4.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 184–194. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-confluent drawings. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 165–176. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Dickerson, M.T., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings: visualizing non-planar diagrams in a planar way. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM Journal on Computing 6, 505–517 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus algorithms for the generation of all maximal bicliques. Discrete Applied Mathematics 145(1), 11–21 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985), doi:10.1137/0214017zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Information Processing Letters 51(4), 207–211 (1994), zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hirsch, M.: Generating confluent drawings: Theory and practice. Master’s thesis, Queen’s University (2006)Google Scholar
  12. 12.
    Di Battista, G., Garg, A., Liotta, G.: An experimental comparison of three graph drawing algorithms (extended abstract). In: Proc. 11th Annual Symp. Computational Geometry (SCG ’95), Vancouver, British Columbia, Canada, pp. 306–315. ACM Press, New York (1995), doi:10.1145/220279.220312CrossRefGoogle Scholar
  13. 13.
    Gansner, E.R., North, S.C.: An open graph visualization system and its applications to software engineering. Softw. Pract. Exper. 30(11), 1203–1233 (2000)zbMATHCrossRefGoogle Scholar
  14. 14.
    Barghouti, N.S., Mocenigo, J., Lee, W.: Grappa: A graph package in java. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 336–343. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. 15.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1998)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Michael Hirsch
    • 1
  • Henk Meijer
    • 1
  • David Rappaport
    • 1
  1. 1.School of Computing, Queen’s University, Kingston, OntarioCanada

Personalised recommendations