Improved Circular Layouts

  • Emden R. Gansner
  • Yehuda Koren
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4372)

Abstract

Circular graph layout is a drawing scheme where all nodes are placed on the perimeter of a circle. An inherent issue with circular layouts is that the rigid restriction on node placement often gives rise to long edges and an overall dense drawing. We suggest here three independent, complementary techniques for lowering the density and improving the readability of circular layouts. First, a new algorithm is given for placing the nodes on the circle such that edge lengths are reduced. Second, we enhance the circular drawing style by allowing some of the edges to be routed around the exterior of the circle. This is accomplished with an algorithm for optimally selecting such a set of externally routed edges. The third technique reduces density by coupling groups of edges as bundled splines that share part of their route. Together, these techniques are able to reduce clutter, density and crossings compared with existing methods.

References

  1. 1.
    Baur, M., Brandes, U.: Crossing Reduction in Circular Layouts. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 332–343. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An Experimental Comparison of Four Graph Drawing Algorithms. Comput. Geom. Theory Appl. 7, 303–325 (1997)MATHGoogle Scholar
  3. 3.
    Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.: Confluent drawings: Visualizing Non-Planar Diagrams in a Planar Way. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 1–12. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Doğrusöz, U., Madden, B., Madden, P.: Circular layout in the Graph Layout Toolkit. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 92–100. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Eppstein, D.: Fast Hierarchical Clustering and Other Applications of Dynamic Closest Pairs. Journal of Experimental Algorithmics 5, 1–23 (2000)CrossRefGoogle Scholar
  6. 6.
    Ganapathy, M.K., Lodha, S.: On Minimum Circular Arrangement. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 394–405. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Gansner, E.R., Koren, Y., North, S.: Graph Drawing by Stress Majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Gansner, E.R., North, S.: An Open Graph Visualization system and its Applications to Software Engineering. Software - Practice & Experience 30, 1203–1233 (2000), also, www.graphviz.org MATHCrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP Completeness. Freeman, New York (1979)MATHGoogle Scholar
  10. 10.
    Hall, K.M.: An r-dimensional Quadratic Placement Algorithm. Management Science 17, 219–229 (1970)MATHGoogle Scholar
  11. 11.
    Holten, D., van Wijk, J.J.: Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data. In: Proc. IEEE Information Visualization (InfoVis’06), IEEE Computer Society Press, Los Alamitos ( to appear)Google Scholar
  12. 12.
    Kar, G., Madden, B., Gilbert, R.S.: Heuristic Layout Algorithms for Network Management Presentation Services. IEEE Network, 29–36 (1988)Google Scholar
  13. 13.
    Kaufmann, M., Wiese, R.: Maintaining the Mental Map for Circular Drawings. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 12–22. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Liberatore, V.: Multicast Scheduling for List Requests. In: Proc. IEEE INFOCOM 2002, pp. 1129–1137. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  15. 15.
    Masuda, S., Kashiwabara, T., Nakajima, K., Fujisawa, T.: On the NP-Completeness of a Computer Network Layout Problem. In: Proc. IEEE International Symposium on Circuits and Systems, pp. 292–295. IEEE Computer Society Press, Los Alamitos (1987)Google Scholar
  16. 16.
    Newbery, F.J.: Edge Concentration: A Method for Clustering Directed Graphs. In: Proc. 2nd Intl. Workshop Software Configuration Management, pp. 76–85 (1989)Google Scholar
  17. 17.
    Six, J.M., Tollis, I.G.: Circular Drawings of Biconnected Graphs. In: Proc. Algorithms Engineering and Experimentation (ALENEX’99), pp. 57–73 (1999)Google Scholar
  18. 18.
    Six, J.M., Tollis, I.G.: A Framework for Circular Drawings of Networks. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 107–116. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for Visual Understanding of Hierarchical Systems. IEEE Trans. Systems, Man, and Cybernetics 11, 109–125 (1981)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Symeonidis, A., Tollis, I.G.: Visualization of Biological Information with Circular Drawings. In: Barreiro, J.M., Martín-Sánchez, F., Maojo, V., Sanz, F. (eds.) ISBMDA 2004. LNCS, vol. 3337, pp. 468–478. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Tutte, W.T.: How to Draw a Graph. Proc. London Mathematical Society 13, 743–768 (1963)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Emden R. Gansner
    • 1
  • Yehuda Koren
    • 1
  1. 1.AT&T Labs — Research, Florham Park, NJ 07932USA

Personalised recommendations