Advertisement

Drawing Bipartite Graphs on Two Curves

  • Emilio Di Giacomo
  • Luca Grilli
  • Giuseppe Liotta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4372)

Abstract

Let G be a bipartite graph, and let λ e ,λ i be two parallel convex curves; we study the question about whether G admits a planar straight line drawing such that the vertices of one partite set of G lie on λ e and the vertices of the other partite set lie on λ i . A characterization is presented that gives rise to linear time testing and drawing algorithms.

References

  1. 1.
    Bachmaier, C., Brandenburg, F.J., Forster, M.: Radial level planarity testing and embedding in linear time. J. Graph Algorithms Appl. 9(1), 53–97 (2005)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Upper Saddle River (1999)zbMATHCrossRefGoogle Scholar
  3. 3.
    Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained drawings of planar graphs. Comput. Geom.: Theory and Appl. 30, 1–23 (2005)zbMATHGoogle Scholar
  4. 4.
    Eades, P., McKay, B.D., Wormald, N.C.: On an edge crossing problem. In: Proc 9th Austr. Comp. Sci. conf., pp. 327–334. Australian National University (1986)Google Scholar
  5. 5.
    Eades, P., Whitesides, S.H.: Drawing graphs in two layers. Theoretical Computer Science 131(2), 361–374 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Harary, F., Schwenk, A.: A new crossing number for bipartite graphs. Utilitas Mathematica 1, 203–209 (1972)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  8. 8.
    Tomii, N., Kambayashi, Y., Yajima, S.: On planarization algorithms of 2-level graphs. Technical Report EC77-38, Inst. of Elect. and Comm. Eng. Japan (1977)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • Luca Grilli
    • 1
  • Giuseppe Liotta
    • 1
  1. 1.Dipartimento di Ingegneria Elettronica e dell’Informazione, Università degli Studi di Perugia 

Personalised recommendations