Radial Drawings of Graphs: Geometric Constraints and Trade-Offs

  • Emilio Di Giacomo
  • Walter Didimo
  • Giuseppe Liotta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4372)


This paper studies how to compute radial drawings of graphs by taking into account additional geometric constraints which correspond to typical aesthetic and semantic requirements for the visualization. The following requirements are considered: vertex centrality, edge crossings, curve complexity, and vertex radial distribution. Trade-offs among these requirements and efficient drawing algorithms are presented.


  1. 1.
    Bachmaier, C., Brandenburg, F.J., Forster, M.: Track planarity testing and embedding. In: Proc. of SOFSEM’04, vol. 2, pp. 3–17 (2004)Google Scholar
  2. 2.
    Bachmaier, C., Brandenburg, F.J., Forster, M.: Radial level planarity testing and embedding in linear time. JGAA 9(1), 53–97 (2005)MATHMathSciNetGoogle Scholar
  3. 3.
    Brandes, U., Kenis, P., Wagner, D.: Communicating centrality in policy network drawings. IEEE Trans. on Vis. and Comp. Graph. 9(2), 241–253 (2003)CrossRefGoogle Scholar
  4. 4.
    Brandes, U., Wagner, D.: Visone - analysis and visualization of social networks. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software, pp. 321–340. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Englewood Cliffs (1999)MATHCrossRefGoogle Scholar
  7. 7.
    Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Computing radial drawings on the minimum number of circles. JGAA 9(3), 365–389 (2005)Google Scholar
  8. 8.
    Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained drawings of planar graphs. Computational Geometry 30, 1–23 (2005)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dodge, M., Kitchin, R.: Atlas of Cyberspace. Addison-Wesley, Reading (2001)Google Scholar
  10. 10.
    Dorogstev, S.N., Mendes, J.F.F.: Evolution of Networks, From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)Google Scholar
  11. 11.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)MATHGoogle Scholar
  12. 12.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)MATHMathSciNetGoogle Scholar
  13. 13.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graph and Combinatorics 17, 717–728 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. 15.
    Purchase, H.C.: Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interacting with Computers 13(2), 147–162 (2000)CrossRefGoogle Scholar
  16. 16.
    Sugiyama, K.: Graph Drawing and Applications. World Scientific, Singapore (2002)MATHGoogle Scholar
  17. 17.
    Tamassia, R.: Advances in the theory and practice of graph drawing. Theoretical Computer Science 217(2), 235–254 (1999)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Trans. Syst., Man and Cyber (SMC) 18(1), 61–79 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • Walter Didimo
    • 1
  • Giuseppe Liotta
    • 1
  1. 1.Dip. Ingegneria Elettronica e dell’Informazione - Università degli Studi di Perugia 

Personalised recommendations