A New Approximation Algorithm for Bend Minimization in the Kandinsky Model

  • Wilhelm Barth
  • Petra Mutzel
  • Canan Yıldız
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4372)


The Kandinsky model has been introduced by Fößmeier and Kaufmann in order to deal with planar orthogonal drawings of planar graphs with maximal vertex degree higher than four [7]. No polynomial-time algorithm is known for computing a (region preserving) bend minimal Kandinsky drawing. In this paper we suggest a new 2-approximation algorithm for this problem. Our extensive computational experiments [13] show that the quality of the computed solutions is better than those of its predecessors [6]. E.g., for all instances in the Rome graph benchmark library [4] it computed the optimal solution, and for randomly generated triangulated graphs with up to 800 vertices, the absolute error was less than 2 on average.


  1. 1.
    AGD User Manual (1999), http://www.ads.tuwien.ac.at/AGD/
  2. 2.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  3. 3.
    Batini, C., Nardelli, E., Tamassia, R.: A Layout Algorithm for Data Flow Diagrams. IEEE Trans. Softw. Eng (SE) 12(4), 538–546 (1986)Google Scholar
  4. 4.
    Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An Experimental Comparison of Three Graph Drawing Algorithms. In: Proc. 11th Ann. ACM Symp. Comput. Geom., pp. 306–315. ACM Press, New York (1995)Google Scholar
  5. 5.
    Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with the minimum number of bends. IEEE Trans. Comput. 49(8), 826–840 (2000)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Eiglsperger, M.: Automatic Layout of UML Calss Diagrams: A Topology-Shape-Metrics Approach. PhD thesis, Eberhard-Karls-Universität zu Tübingen (2003)Google Scholar
  7. 7.
    Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Fößmeier, U.: Orthogonale Visualisierungstechnicken für Graphen. PhD thesis, Eberhard-Karls-Universitä t zu Tübingen (1997)Google Scholar
  9. 9.
    Fößmeier, U., Kaufmann, M.: Algorithms and Area Bounds for Nonplanar Orthogonal Drawings. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 134–145. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Garg, A., Tamassia, R.: A New Minimum Cost Flow Algorithm with Applications to Graph Drawing. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 201–216. Springer, Heidelberg (1997)Google Scholar
  11. 11.
  12. 12.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing 16(3), 421–444 (1987)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Yildiz, C.: Knickminimales Orthogonales Zeichnen Planarer Graphen im Kandinsky Modell. PhD thesis, Vienna University of Technology (2006)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Wilhelm Barth
    • 1
  • Petra Mutzel
    • 2
  • Canan Yıldız
    • 1
  1. 1.Institute of Computer Graphics and Algorithms, Vienna University of Technology, Favoritenstraße 9-11, 1040 WienAustria
  2. 2.Department of Computer Science, University of Dortmund, Otto-Hahn-Str. 14, D-44227 DortmundGermany

Personalised recommendations