k-Colored Point-Set Embeddability of Outerplanar Graphs

  • Emilio Di Giacomo
  • Walter Didimo
  • Giuseppe Liotta
  • Henk Meijer
  • Francesco Trotta
  • Stephen K. Wismath
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4372)


This paper addresses the problem of designing drawing algorithms that receive as input a planar graph G, a partitioning of the vertices of G into k different semantic categories V 0, ⋯ , V k − 1, and k disjoint sets S 0, ⋯ , S k − 1 of points in the plane with |V i | = |S i | (i ∈ {0, ⋯ , k − 1}). The desired output is a planar drawing such that the vertices of V i are mapped onto the points of S i and such that the curve complexity of the edges (i.e. the number of bends along each edge) is kept small. Particular attention is devoted to outerplanar graphs, for which lower and upper bounds on the number of bends in the drawings are established.


  1. 1.
    Bose, P.: On embedding an outer-planar graph on a point set. Computational Geometry: Theory and Applications 23, 303–312 (2002)MATHMathSciNetGoogle Scholar
  2. 2.
    Bose, P., McAllister, M., Snoeyink, J.: Optimal algorithms to embed trees in a point set. Journal of Graph Algorithms and Applications 2(1), 1–15 (1997)MathSciNetGoogle Scholar
  3. 3.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Upper Saddle River (1999)MATHCrossRefGoogle Scholar
  4. 4.
    Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Trotta, F., Wismath, S.K.: k-colored point-set embeddability of outerplanar graphs. Technical Report RT-002-06, Dip. di Ingegneria Elettronica e dell’Informazione, Univ. of Perugia (2006)Google Scholar
  5. 5.
    Di Giacomo, E., Liotta, G., Trotta, F.: On embedding a graph on two sets of points. IJFCS, Special Issue on Graph Drawing 2005 (to appear, 2005)Google Scholar
  6. 6.
    Di Giacomo, E., Liotta, G., Trotta, F.: How to embed a path onto two sets of points. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 111–116. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. Am. Math. Month. 98(2), 165–166 (1991)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Halton, J.H.: On the thickness of graphs of given degree. Information Sciences 54, 219–238 (1991)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)MATHGoogle Scholar
  10. 10.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)MATHMathSciNetGoogle Scholar
  11. 11.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graph and Combinatorics 17, 717–728 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Sugiyama, K.: Graph Drawing and Applications for Software and Knowledge Engineers. Word Scientific, Singapore (2002)MATHGoogle Scholar
  13. 13.
    Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Trans. Sys., Man, and Cyber (SMC) 18, 61–79 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • Walter Didimo
    • 1
  • Giuseppe Liotta
    • 1
  • Henk Meijer
    • 2
  • Francesco Trotta
    • 1
  • Stephen K. Wismath
    • 3
  1. 1.Dip. di Ingegneria Elettronica e dell’Informazione, Università degli Studi di Perugia 
  2. 2.Department of Computing and Information Science, Queen’s University 
  3. 3.Department of Mathematics and Computer Science, University of Lethbridge 

Personalised recommendations