Upright-Quad Drawing of st-Planar Learning Spaces

  • David Eppstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4372)

Abstract

We consider graph drawing algorithms for learning spaces, a type of st-oriented partial cube derived from antimatroids and used to model states of knowledge of students. We show how to draw any st-planar learning space so all internal faces are convex quadrilaterals with the bottom side horizontal and the left side vertical, with one minimal and one maximal vertex. Conversely, every such drawing represents an st-planar learning space. We also describe connections between these graphs and arrangements of translates of a quadrant.

References

  1. 1.
    Cosyn, E., Uzun, H.: Axioms for learning spaces. To be submitted to Journal of Mathematical Psychology (2005)Google Scholar
  2. 2.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  3. 3.
    Di Battista, G., Tamassia, R., Tollis, I.G.: Area requirement and symmetry display of planar upward drawings. Discrete & Comput. Geom. 7, 381–401 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Doignon, J.-P., Falmagne, J.-C.: Knowledge Spaces. Springer, Heidelberg (1999)MATHGoogle Scholar
  5. 5.
    Eppstein, D.: Algorithms for drawing media. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 173–183. Springer, Heidelberg (2005), arXiv:cs.DS/0406020Google Scholar
  6. 6.
    Eppstein, D.: Cubic partial cubes from simplicial arrangements. (October 2005), http://arxiv.org/, arXiv:math.CO/0510263
  7. 7.
    Eppstein, D.: The lattice dimension of a graph. Eur. J. Combinatorics 26(5), 585–592 (2005), http://dx.doi.org/10.1016/j.ejc.2004.05.001, arXiv:cs.DS/0402028MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Eppstein, D.: What is the dimension of the set of partitions? Unpublished web document (2006), http://11011110.livejournal.com/6402.html
  9. 9.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-confluent drawings. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 165–176. Springer, Heidelberg (2006), arXiv:cs.CG/0510024CrossRefGoogle Scholar
  10. 10.
    de Fraysseix, H., Ossona de Mendez, P.: Stretching of Jordan arc contact systems. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 71–85. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Hsu, Y.-F., Falmagne, J.-C., Regenwetter, M.: The tuning in-and-out model: a random walk and its application to presidential election surveys. Submitted (2002)Google Scholar
  12. 12.
    Imrich, W., Klavžar, S.: Product Graphs. John Wiley & Sons, Chichester (2000)MATHGoogle Scholar
  13. 13.
    Korte, B., Lovász, L., Schrader, R.: Greedoids. Algorithms and Combinatorics, vol. 4. Springer, Heidelberg (1991)MATHGoogle Scholar
  14. 14.
    Ovchinnikov, S.V.: Media theory: representations and examples. To appear in Discrete Applied Mathematics. arXiv:math.CO/0512282Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • David Eppstein
    • 1
  1. 1.Computer Science Department, University of California, Irvine 

Personalised recommendations