Chordal Graphs as Intersection Graphs of Pseudosegments

  • Cornelia Dangelmayr
  • Stefan Felsner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4372)

Abstract

We investigate which chordal graphs have a representation as intersection graphs of pseudosegments. The main contribution is a construction which shows that all chordal graphs which have a representation as intersection graph of subpaths on a tree are representable. A family of intersection graphs of substars of a star is used to show that not all chordal graphs are representable by pseudosegments.

References

  1. 1.
    Bodirsky, M., Dangelmayr, C., Kára, J.: Representing Series-parallel Graphs as Intersection Graphs of Line Segments in Three Directions (submitted)Google Scholar
  2. 2.
    de Castro, N., Cobos, F.J., Dana, J.C., Márquez, A.: Triangle-Free Planar Graphs as Segment Intersection Graphs. Journal of Graph Algorithms and Applications 6, 7–26 (2002)MATHMathSciNetGoogle Scholar
  3. 3.
    Ben-Arroyo Hartman, I., Newman, I., Ziv, R.: On grid intersection graphs. Discrete Math. 87, 41–52 (1991)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    de Fraysseix, H., de Mendez, P.O., Pach, J.: Representation of planar graphs by segments. In: Colloquia Mathematica Societatis János Bolyai, Intuitive Geometry, Szeged, Hungary (1991)Google Scholar
  5. 5.
    de Fraysseix, H., de Mendez, P.O.: Contact and Intersection Representations. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 217–227. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Gavril, F.: A recognition algorithm for the intersection graphs of paths in trees. Discrete Math. 23, 211–227 (1978)MATHMathSciNetGoogle Scholar
  7. 7.
    Kratochvil, J.: String Graphs II: Recognizing String Graphs is NP-hard. Journal of Comb. Theory Ser. B 52(1), 67–78 (1991)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kratochvil, J.: A special planar satisfiability problem and a consequence of its NP-completeness. Discrete Applied Mathematics 52, 233–252 (1994)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kratochvil, J., Matoušek, J.: Intersection graphs of Segments. Journal of Comb. Theory Ser. B 62, 289–315 (1994)MATHCrossRefGoogle Scholar
  10. 10.
    Monma, C., Wei, V.K.: Intersection graphs of paths in a tree. Journal of Comb. Theory Ser. B 41, 141–181 (1986)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Schaefer, M., Sedgwick, E., Stefanovic, D.: Recognizing string graphs in NP. Journal of Comput. Syst.Sci. 2, 365–380 (2003)CrossRefGoogle Scholar
  12. 12.
    Scheinerman, E.R.: Intersection classes and multiple intersection parameters of graphs, PhD thesis, Princeton University (1984)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Cornelia Dangelmayr
    • 1
  • Stefan Felsner
    • 2
  1. 1.Freie Universität Berlin, Institut für Mathematik II, Arnimallee 3, 14195 BerlinGermany
  2. 2.Technische Universität Berlin, Institut für Mathematik, MA 6-1, Strasse des 17. Juni 136, 10623 BerlinGermany

Personalised recommendations