On the Crossing Number of Almost Planar Graphs

  • Petr Hliněný
  • Gelasio Salazar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4372)

Abstract

Crossing minimization is one of the most challenging algorithmic problems in topological graph theory, with strong ties to graph drawing applications. Despite a long history of intensive research, no practical “good” algorithm for crossing minimization is known (that is hardly surprising, since the problem itself is NP-complete). Even more surprising is how little we know about a seemingly simple particular problem: to minimize the number of crossings in an almost planar graph, that is, a graph with an edge whose removal leaves a planar graph. This problem is in turn a building block in an “edge insertion” heuristic for crossing minimization. In this paper we prove a constant factor approximation algorithm for the crossing number of almost planar graphs with bounded degree. On the other hand, we demonstrate nontriviality of the crossing minimization problem on almost planar graphs by exhibiting several examples, among them new families of crossing critical graphs which are almost planar and projective.

2000 Math Subject Classification: 05C10, 05C62, 68R10.

Keywords

crossing number crossing minimization  planarization crossing-critical graphs 

References

  1. 1.
    Bokal, D., Fijavz, G., Mohar, B.: The minor crossing number. SIAM Journal on Discrete Mathematics (to appear)Google Scholar
  2. 2.
    Brandenburg, F., Eppstein, D., Goodrich, M.T., Kobourov, S., Liotta, G., Mutzel, P.: Selected Open Problems in Graph Drawing. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 515–539. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Even, G., Guha, S., Schieber, B.: Improved Approximations of Crossings in Graph Drawings and VLSI Layout Areas. SIAM J. Comput. 32(1), 231–252 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic Discrete Methods 4, 312–316 (1983)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Gitler, I., Leaños, J., Salazar, G.: The crossing number of a projective graph is quadratic in the face–width. Manuscript (2006)Google Scholar
  6. 6.
    Grohe, M.: Computing Crossing Numbers in Quadratic Time. J. Comput. Syst. Sci. 68, 285–302 (2004)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph. In: Symposium on Discrete Algorithms SODA 2001, pp. 246–255. SIAM, Philadelphia (2001)Google Scholar
  8. 8.
    Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph. Algorithmica 41, 289–308 (2005)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Hliněný, P.: Crossing-critical graphs and path-width. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 102–114. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Hliněný, P.: Crossing number is hard for cubic graphs. J. of Combinatorial Theory Ser. B 96, 455–471 (2006)CrossRefMATHGoogle Scholar
  11. 11.
    Mohar, B., Thomassen, C.: Graphs on surfaces. In: Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore (2001)Google Scholar
  12. 12.
    Robertson, N., Seymour, P.D., Thomas, R.: A survey of linkless embeddings. In: Robertson, N., Seymour, P. (eds.) Graph Structure Theory Contemporary Mathematics. Contemporary Mathematics, pp. 125–136. American Mathematical Society (1993)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Petr Hliněný
    • 1
  • Gelasio Salazar
    • 2
  1. 1.Faculty of Informatics, Masaryk University Botanická 68a, 602 00 BrnoCzech Republic
  2. 2.Instituto de Física, Universidad Autónoma de San Luis Potosí San Luis Potosí, 78000Mexico

Personalised recommendations