Drawing Cubic Graphs with at Most Five Slopes

  • Balázs Keszegh
  • János Pach
  • Dömötör Pálvölgyi
  • Géza Tóth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4372)

Abstract

We show that every graph G with maximum degree three has a straight-line drawing in the plane using edges of at most five different slopes. Moreover, if G is connected and has at least one vertex of degree less than three, then four directions suffice.

References

  1. 1.
    Barát, J., Matoušek, J., Wood, D.: Bounded-degree graphs have arbitrarily large geometric thickness. Electronic J. Combinatorics 13(1), R3 (2006)Google Scholar
  2. 2.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Upper Saddle River (1999)MATHCrossRefGoogle Scholar
  3. 3.
    Dujmović, V., Suderman, M., Wood, D.R.: Really straight graph drawings. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 122–132. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low degree graphs. In: Proc. 20th ACM Symp. on Computational Geometry (SoCG’04), pp. 340–346. ACM Press, New York (2004)Google Scholar
  5. 5.
    Engelstein, M.: Drawing graphs with few slopes. Research paper submitted to the Intel Competition for high school students, New York, (October 2005)Google Scholar
  6. 6.
    Eppstein, D.: Separating thickness from geometric thickness. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs Contemporary Mathematics 342, pp. 75–86. Amer. Math. Soc, Providence (2004)Google Scholar
  7. 7.
    Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope numbers. Electronic J. Combinatorics 13(1), N1 (2006)Google Scholar
  8. 8.
    Ungar, P.: On diagrams representing maps. J. London Math. Soc. 28, 336–342 (1953)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Wade, G.A., Chu, J.H.: Drawability of complete graphs using a minimal slope set. The Computer J. 37, 139–142 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Balázs Keszegh
    • 1
  • János Pach
    • 2
    • 4
  • Dömötör Pálvölgyi
    • 3
  • Géza Tóth
    • 4
  1. 1.Central European University, Budapest 
  2. 2.Courant Institute, NYUNew York
  3. 3.Eötvös University, Budapest 
  4. 4.A. Rényi Institute of Mathematics, Budapest 

Personalised recommendations