Three-Dimensional Drawings of Bounded Degree Trees

  • Fabrizio Frati
  • Giuseppe Di Battista
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4372)

Abstract

We show an algorithm for constructing 3D straight-line drawings of balanced constant degree trees. The drawings have linear volume and optimal aspect ratio. As a side effect, we also give an algorithm for constructing 2D drawings of balanced constant degree trees in linear area, with optimal aspect ratio and with better angular resolution with respect to the one of [8]. Further, we present an algorithm for constructing 3D poly-line drawings of trees whose degree is bounded by n 1/3 in linear volume and with optimal aspect ratio.

References

  1. 1.
    Chan, T.M., Goodrich, M.T., Kosaraju, S.R., Tamassia, R.: Optimizing area and aspect ratio in straight-line orthogonal tree drawings. Comput. Geom. 23(2), 153–162 (2002)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cohen, R.F., Eades, P., Lin, T., Ruskey, F.: Three-dimensional graph drawing. Algorithmica 17(2), 199–208 (1997)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom. 2, 187–200 (1992)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Upper Saddle River (1999)MATHCrossRefGoogle Scholar
  5. 5.
    Felsner, S., Liotta, G., Wismath, S.K.: Straight-line drawings on restricted integer grids in two and three dimensions. J. Graph Algorithms Appl. 7(4), 363–398 (2003)MATHMathSciNetGoogle Scholar
  6. 6.
    Garg, A., Goodrich, M.T., Tamassia, R.: Planar upward tree drawings with optimal area. Int. J. Comput. Geometry Appl. 6(3), 333–356 (1996)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Garg, A., Rusu, A.: Straight-line drawings of general trees with linear area and arbitrary aspect ratio. In: Kumar, V., Gavrilova, M., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2669, pp. 876–885. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Trevisan, L.: A note on minimum-area upward drawing of complete and Fibonacci trees. Information Processing Letters 57(5), 231–236 (1996), citeseer.ist.psu.edu/trevisan96note.html CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Fabrizio Frati
    • 1
  • Giuseppe Di Battista
    • 1
  1. 1.Università di Roma Tre 

Personalised recommendations