Advertisement

The Efficient Computation of Complete and Concise Substring Scales with Suffix Trees

  • Sébastien Ferré
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4390)

Abstract

Strings are an important part of most real application multi-valued contexts. Their conceptual treatment requires the definition of substring scales, i.e., sets of relevant substrings, so as to form informative concepts. However these scales are either defined by hand, or derived in a context-unaware manner (e.g., all words occuring in string values). We present an efficient algorithm based on suffix trees that produces complete and concise substring scales. Completeness ensures that every possible concept is formed, like when considering the scale of all substrings. Conciseness ensures the number of scale attributes (substrings) is less than the cumulated size of all string values. This algorithm is integrated in Camelis, and illustrated on the set of all ICCS paper titles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CS00]
    Cole, R., Stumme, G.: CEM - a conceptual email manager. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 438–452. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. [FR00]
    Ferré, S., Ridoux, O.: A logical generalization of formal concept analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 371–384. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. [FR01]
    Ferré, S., Ridoux, O.: Searching for objects and properties with logical concept analysis. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 187–201. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. [FR02]
    Ferré, S., Ridoux, O.: A framework for developing embeddable customized logics. In: Pettorossi, A. (ed.) LOPSTR 2001. LNCS, vol. 2372, pp. 191–215. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. [FR04]
    Ferré, S., Ridoux, O.: An introduction to logical information systems. Information Processing & Management 40(3), 383–419 (2004)CrossRefzbMATHGoogle Scholar
  6. [GK01]
    Ganter, B., Kuznetsov, S.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. [GMA93]
    Godin, R., Missaoui, R., April, A.: Experimental comparison of navigation in a Galois lattice with conventional information retrieval methods. International Journal of Man-Machine Studies 38(5), 747–767 (1993)CrossRefGoogle Scholar
  8. [Gus97]
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  9. [GW99]
    Ganter, B., Wille, R.: Formal Concept Analysis — Mathematical Foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  10. [Kuz99]
    Kuznetsov, S.: Learning of simple conceptual graphs from positive and negative examples. In: Żytkow, J.M., Rauch, J. (eds.) Principles of Data Mining and Knowledge Discovery. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999)Google Scholar
  11. [Ukk95]
    Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Sébastien Ferré
    • 1
  1. 1.Irisa/Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedexFrance

Personalised recommendations