Display of Peptides on the Surface of Tobacco Mosaic Virus Particles

  • M. L. Smith
  • W. P. Fitzmaurice
  • T. H. Turpen
  • K. E. Palmer
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 332)

In this review, we focus on the potential that tobacco mosaic virus (TMV) has as a carrier for immunogenic epitopes, and the factors that must be considered in order to bring products based on this platform to the market. Large Scale Biology Corporation developed facile and scaleable methods for manufacture of candidate peptide display vaccines based on TMV. We describe how rational design of peptide vaccines can improve the manufacturability of particular TMV products. We also discuss downstream processing and purification of the vaccine products, with particular attention to the metrics that a product must attain in order to meet criteria for regulatory approval as injectable biologics.

Keywords

tobacco mosaic virus vaccine plant virus-like particle papillomavirus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams SE, Dawson KM, Gull K, et al (1987) The expression of hybrid HIV-Ty virus-like particles in yeast. Nature 329:68–70PubMedCrossRefGoogle Scholar
  2. Assemand E, Lacroix M, Mateescu MA (2003) L-Tyrosine prevents aggregation of therapeutic proteins by gamma-irradiation. Biotechnol Appl Biochem 38:151–156PubMedCrossRefGoogle Scholar
  3. Bachmann MF, Dyer MR (2004) Opinion. Therapeutic vaccination for chronic diseases: a new class of drugs in sight. Nat Rev Drug Discov 3:81–88PubMedCrossRefGoogle Scholar
  4. Bahnemann HG (1990) Inactivation of viral-antigens for vaccine preparation with particular reference to the application of binary ethyleneimine. Vaccine 8:299–303PubMedCrossRefGoogle Scholar
  5. Bendahmane M, Koo M, Karrer E, et al (1999) Display of epitopes on the surface of tobacco mosaic virus: impact of charge and isoelectric point of the epitope on virus-host interactions. J Mol Biol 290:9–20PubMedCrossRefGoogle Scholar
  6. Birkett A, Lyons K, Schmidt A, et al (2002) A modified hepatitis B virus core particle containing multiple epitopes of the Plasmodium falciparum circumsporozoite protein provides a highly immunogenic malaria vaccine in preclinical analyses in rodent and primate hosts. Infect Immun 70:6860–6870PubMedCrossRefGoogle Scholar
  7. Blackburn NK, Besselaar TG (1991) A study of the effect of chemical inactivants on the epitopes of Rift-Valley fever virus glycoproteins using monoclonal-antibodies. J Virol Methods 33:367–374PubMedCrossRefGoogle Scholar
  8. Bowman F, Calhoun M, White M (1967) Microbiological methods for quality control of membrane filters. J Pharm Sci 56:222–225PubMedCrossRefGoogle Scholar
  9. Brown F (2001) Inactivation of viruses by aziridines. Vaccine 20:322–327PubMedCrossRefGoogle Scholar
  10. Brown F, Meyer RF, Law M, et al (1998) A universal virus inactivant for decontaminating blood and biopharmaceutical products. Biologicals 26:39–47PubMedCrossRefGoogle Scholar
  11. Burke KL, Dunn G, Ferguson Met al (1988) Antigen chimeras of poliovirus as potential new vaccines. Nature 332:81–82PubMedCrossRefGoogle Scholar
  12. Chackerian B, Lenz P, Lowy DR, et al (2002) Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. J Immunol 169:6120–6126PubMedGoogle Scholar
  13. Clarke BE, Newton SE, Carroll AR, et al (1987) Improved immunogenicity of a peptide epitope after fusion to hepatitis-B core protein. Nature 330:381–384PubMedCrossRefGoogle Scholar
  14. Clarke BE, Brown AL, Grace KG, et al (1990) Presentation and immunogenicity of viral epitopes on the surface of hybrid hepatitis-B virus core particles produced in bacteria. J Gen Virol 71:1109–1117PubMedCrossRefGoogle Scholar
  15. Corbett MK (1961) Purification of potato virus X without aggregation. Virology 15:8–15PubMedCrossRefGoogle Scholar
  16. Dalsgaard K, Uttenthal A, Jones TD, et al (1997) Plant-derived vaccine protects target animals against a viral disease. Nat Biotechnol 15:248–252PubMedCrossRefGoogle Scholar
  17. Dawson WO, Beck DL, Knorr DA, et al (1986) cDNA cloning of the complete genome of tobacco mosaic-virus and production of infectious transcripts. Proc Natl Acad Sci U S A 83:1832–1836PubMedCrossRefGoogle Scholar
  18. Delpeyroux F, Chenciner N, Lim A, et al (1986) A poliovirus neutralization epitope expressed on hybrid hepatitis-B surface-antigen particles. Science 233:472–475PubMedCrossRefGoogle Scholar
  19. Delpeyroux F, Peillon N, Blondel B, et al (1988) Presentation and immunogenicity of the hepati-tis-B surface-antigen and a poliovirus neutralization antigen on mixed empty envelope particles. J Virol 62:1836–1839PubMedGoogle Scholar
  20. Dreesen DW (1997) A global review of rabies vaccines for human use. Vaccine 15:S2–S6.PubMedCrossRefGoogle Scholar
  21. Dunn DB, Hitchborn JH (1965) The use of bentonite in the purification of plant viruses. Virology 25:171–192PubMedCrossRefGoogle Scholar
  22. Fehr T, Skrastina D, Pumpens P, et al (1998) T cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proc Natl Acad Sci U S A 95:9477–9481PubMedCrossRefGoogle Scholar
  23. Fitchen J, Beachy RN, Hein MB (1995) Plant-virus expressing hybrid coat protein with added murine epitope elicits autoantibody response. Vaccine 13:1051–1057PubMedCrossRefGoogle Scholar
  24. Fitzmaurice WP (2002) U.S. Patent No. 6344597Google Scholar
  25. Garger SJ, Holtz RB, et al (2000) U.S. patent No. 6033895Google Scholar
  26. Garger SJ, Holtz RB, et al (2001) U.S. patent No. 6303779Google Scholar
  27. Gooding G V, Hebert TT (1967) A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology 57:1285PubMedGoogle Scholar
  28. Haynes JR, Cunningham J, von Seefried A, et al (1986) Development of a genetically-engineered, candidate polio vaccine employing the self-assembling properties of the tobacco mosaic-virus coat protein. Bio/Technology 4:637–641CrossRefGoogle Scholar
  29. Howard G, Duberstein R (1980) A case of penetration of 0.2 um rated membrane filters by bacteria. J Parenter Drug Assoc 34:95PubMedGoogle Scholar
  30. Kasermann F, Wyss K, Kempf C (2001) Virus inactivation and protein modifications by ethylene-imines. Antiviral Res 52:33–41PubMedCrossRefGoogle Scholar
  31. Koo M, Bendahmane M, Lettieri GA, et al (1999) Protective immunity against murine hepatitis virus (MHV) induced by intranasal or subcutaneous administration of hybrids of tobacco mosaic virus that carries an MHV epitope. Proc Natl Acad Sci U S A 96:7774–7779PubMedCrossRefGoogle Scholar
  32. Langeveld JPM, Brennan FR, Martínez-Torrecuadrada JL, et al (2001) Inactivated recombinant plant virus protects dogs from a lethal challenge with canine parvovirus. Vaccine 19:3661–3670PubMedCrossRefGoogle Scholar
  33. Loor F (1967) Comparative immunogenicities of tobacco mosaic virus, protein subunits, and reag-gregated protein subunits. Virology 33:215–220PubMedCrossRefGoogle Scholar
  34. Marbrook J, Matthews REF (1966) The differential immunogenicity of plant viral protein and nucleoproteins. Virology 28:219–228PubMedCrossRefGoogle Scholar
  35. Martin A, Wychowski C, Couderc T, et al (1988) Engineering a poliovirus type-2 antigenic site on a type-1 capsid results in a chimaeric virus which is neurovirulent for mice. EMBO J 7:2839–2847PubMedGoogle Scholar
  36. Martin J, Crossland G, Wood DJ, et al (2003) Characterization of formaldehyde-inactivated polio-virus preparations made from live-attenuated strains. J Gen Virol 84:1781–1788PubMedCrossRefGoogle Scholar
  37. McCormick AA, Reinl SJ, Cameron TI, et al (2003) Individualized human scFv vaccines produced in plants: humoral anti-idiotype responses in vaccinated mice confirm relevance to the tumor Ig. J Immunol Methods 278:95–104PubMedCrossRefGoogle Scholar
  38. McCormick AA, Corbo T, Wykoff-Clary S et al. (2006) TMV-peptide fusion vaccines induce T-cell mediated immune responses and tumor protection in two murine models. Vaccine 24:6414–6423PubMedCrossRefGoogle Scholar
  39. McCormick AA, Reddy S, Reinl SJ et al. (2008) Plant-produced idiotype vaccines for the treatment of Non-Hodgkin's Lymphoma: Safety and immunogenicity in a phase I clinical study. Proc. Natl. Acad. Sci. USA 105 (29):10131–10136PubMedCrossRefGoogle Scholar
  40. Meshi T, Ishikawa M, Motoyoshi F, et al (1986) In vitro transcription of infectious RNAs from full-length cDNAs of tobacco mosaic-virus. Proc Natl Acad Sci U S A 83:5043–5047PubMedCrossRefGoogle Scholar
  41. Moon S, Bin Song K (2001) Effect of gamma-irradiation on the molecular properties of ovalbu-min and ovomucoid and protection by ascorbic acid. Food Chem 74:479–483CrossRefGoogle Scholar
  42. Moorthy VS, Good MF, Hill AV (2004) Malaria vaccine developments. Lancet 363:150–156PubMedCrossRefGoogle Scholar
  43. Namba K, Stubbs G (1986) Structure of tobacco mosaic-virus at 3.6-Å resolution—implications for assembly. Science 231:1401–1406PubMedCrossRefGoogle Scholar
  44. Offit PA, Jew PK (2003) Addressing parents' concerns: do vaccines contain harmful preservatives, adjuvants, additives, or residuals? Pediatrics 112:1394–1401PubMedCrossRefGoogle Scholar
  45. Palmer KE, Benko A Doucette SA et al. (2006) Protection of rabbits against cutaneous and mucosal papillomavirus infection using recombinant tobacco mosaic virus containing L2 cap-sid epitopes. Vaccine 24:5516–5525PubMedCrossRefGoogle Scholar
  46. Patro SY, Freund E, Chang BS (2002) Protein formulation and fill-finish operations. Biotechnol Annu Rev 8:55–84PubMedCrossRefGoogle Scholar
  47. Perez O, Paolazzi CC (1997) Production methods for rabies vaccine. J Ind Microbiol Biotechnol 18:340–347PubMedCrossRefGoogle Scholar
  48. Perrin P, Morgeaux S (1995) Inactivation of DNA by beta-propiolactone. Biologicals 23:207–211PubMedCrossRefGoogle Scholar
  49. Pogue GP, Lindbo JA, Garger SJ, et al (2002) Making an ally from an enemy: plant virology and the new agriculture. Annu Rev Phytopathol 40:45–74PubMedCrossRefGoogle Scholar
  50. Pogue GP, Lindbo JA, McCulloch MJ, et al (2004) U.S. patent No. 6730306 B1Google Scholar
  51. Porta C, Spall VE, Findley KC, et al (2003) Cowpea mosaic virus-based chimaeras—effects of inserted peptides on the phenotype, host range, and transmissibility of the modified viruses. Virology 310:50–63PubMedCrossRefGoogle Scholar
  52. Powell MF, Nguyen T, Baloian L (1998) Compendium of excipients for parenteral formulations. PDA J Pharm Sci Technol 52:238–311PubMedGoogle Scholar
  53. Staczek J, Bendahmane M, Gilleland LB, et al (2000) Immunization with a chimeric tobacco mosaic virus containing an epitope of outer membrane protein F of Pseudomonas aeruginosa provides protection against challenge with P. aeruginosa. Vaccine 18:2266–2274PubMedCrossRefGoogle Scholar
  54. Storni T, Ruedl C, Schwartz K, et al (2004) Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. J Immunol 172:1777–1785PubMedGoogle Scholar
  55. Sugiyama Y, Hamamoto H, Takemoto S, et al (1995) Systemic production of foreign peptides on the particle surface of tobacco mosaic-virus. FEBS Lett 359:247–250PubMedCrossRefGoogle Scholar
  56. Sundaram S, Auriemma M, Howard G Jr, et al (1999) Application of membrane filtration for removal of diminutive bioburden organisms in pharmaceutical products and processes. PDA J Pharm Sci Technol 53:186–201PubMedGoogle Scholar
  57. Timian RG, Savage SM (1966) Purification of barley stripe mosaic virus with chloroform and charcoal. Phytopathology 56:1233–1235Google Scholar
  58. Turpen TH (1999) Tobacco mosaic virus and the virescence of biotechnology. Philos Trans R Soc Lond B Biol Sci 354:665–673PubMedCrossRefGoogle Scholar
  59. Turpen TH, Reinl SJ, Charoenvit Y, et al (1995) Malarial epitopes expressed on the surface of recombinant tobacco virus. Bio/Technology 13:53–57PubMedCrossRefGoogle Scholar
  60. Valenzuela P, Coit D, Kuo G (1985) Antigen engineering in yeast—synthesis and assembly of hybrid hepatitis-B surface antigen herpes simplex 1 gD particles. Bio/Technology 3:323–326CrossRefGoogle Scholar
  61. van Regenmortel MHV (1999) The antigenicity of tobacco mosaic virus. Philos Trans R Soc Lond B Biol Sci 354:559–568PubMedCrossRefGoogle Scholar
  62. Watson JD (1954) The structure of tobacco mosaic virus 1. X-ray evidence of a helical arrangement of sub-units around the longitudinal axis. Biochim Biophys Acta 13:10–19PubMedCrossRefGoogle Scholar
  63. Wesslen T, Lycke E, Olin G, et al (1957) Inactivation of poliomyelitis virus by formaldehyde. Arch Gesamte Virusforsch 7:125–135PubMedCrossRefGoogle Scholar
  64. Wu LG, Jiang LB, Zhou Z, et al (2003) Expression of foot-and-mouth disease virus epitopes in tobacco by a tobacco mosaic virus-based vector. Vaccine 21:4390–4398PubMedCrossRefGoogle Scholar
  65. Wu Y Y, Snyder EL (2003) Safety of the blood supply: role of pathogen reduction. Blood Rev 17:111–122PubMedCrossRefGoogle Scholar
  66. Yusibov V, Hooper DC, Spitsin S V, et al (2002) Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine 20:3155–3164PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. L. Smith
    • 1
  • W. P. Fitzmaurice
    • 1
  • T. H. Turpen
    • 2
  • K. E. Palmer
    • 3
  1. 1.Large Scale Biology CorporationVacavilleUSA
  2. 2.Technology Innovation Group, Inc.AustinUSA
  3. 3.Owensboro Cancer Research ProgramUniversity of LouisvilleOwensboroUSA

Personalised recommendations