Biophysical Phenomics Reveals Functional Building Blocks of Plants Systems Biology: a Case Study for the Evaluation of the Impact of Mycorrhization with Piriformospora indica

  • Reto J. Strasser
  • Merope Tsimilli-Michael
  • Devanand Dangre
  • Mahendra Rai
Part of the Soil Biology book series (SOILBIOL, volume 11)


Cicer Arietinum Biophysical Parameter Cadmium Stress Quinone Acceptor Arbuscular Mycorrhiza Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Briantais JM, Vernotte C, Krause GH, Weiss E (1986) Chlorophyll a fluorescence of higher plants: chloroplasts and leaves. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic, New York pp 539–583Google Scholar
  2. Clark AJ, Landolt W, Bucher J, Strasser RJ (1998) The response of Fagus sylvatica to elevated CO2 and ozone probed by the JIP-test based on the chlorophyll fluorescence rise OJIP. In: De Kok LJ, Stulen I (eds) Responses of plant metabolism to air pollution and global change. Backhuys, Leiden, pp 283–286Google Scholar
  3. Clark AJ, Landolt W, Bucher J, Strasser RJ (2000) Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. Environ Pollut 109:501–507PubMedCrossRefGoogle Scholar
  4. Dau H (1994) Molecular mechanisms and quantitative models of variable photosystem II fluorescence. Photochem Photobiol 60:1–23CrossRefGoogle Scholar
  5. Epitalawage N, Eggenberg P, Strasser RJ (2003) Use of fast chlorophyll a fluorescence technique in detecting drought and salinity tolerant chickpea (Cicer arietinum L.) varieties. Arch Sci Genève 56:79–93Google Scholar
  6. Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160Google Scholar
  7. Govindjee, Amesz J, Fork DC (1986) Light emission by plants and bacteria. Academic, New YorkGoogle Scholar
  8. Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften 19:964CrossRefGoogle Scholar
  9. Krause GH, Weiss E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349CrossRefGoogle Scholar
  10. Krüger GHJ, Tsimilli-Michael M, Strasser RJ (1997) Light stress provokes plastic and elastic modifications in structure and function of photosystem II in camellia leaves. Physiol Plant 101:265–277CrossRefGoogle Scholar
  11. Ouzounidou G, Moustakas M, Strasser RJ (1997) Sites of action of copper in the photosynthetic apparatus of maize leaves: kinetic analysis of chlorophyll fluorescence, oxygen evolution, absorption changes and thermal dissipation as monitored by photoacoustic signals. Aust J Plant Physiol 24:81–90CrossRefGoogle Scholar
  12. Papageorgiou G (1975) Chlorophyll fluorescence: an intrinsic probe of photosynthesis. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic, New York, pp 319–371Google Scholar
  13. Pham GH, Singh A, Malla R, Kumari R, Prasad R, Sachdev M, Luis P, Kaldorf M, Tatjana P, Harrmann S, Hehl S, Declerck S, Buscot F, Oelmuller R, Rexer KH, Kost G, Varma A (2004a) Interaction of P. indica with other microorganisms and plants. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin Heidelberg New York, pp 237–265Google Scholar
  14. Pham GH, Kumari R, Singh A, Sachdev M, Prasad R, Kaldorf M, Buscot F, Oelmuller R, Tatjana P, Weiβ M, Hampp R, Varma A (2004b) Axenic cultures of Piriformospora indica. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin Heidelberg New York, pp 593–616Google Scholar
  15. Pham GH, Srivastava A, Saxena AK, Pareek A, Varma A (2004c) Protocol to understand the interaction between rhizobacteria and symbiotic fungus: Piriformospora indica. In: Podila G, Varma A (eds) Basic research and applications: Mycorrhizae. (Microbiology series, vol 1) IK International, New York, pp 425–450Google Scholar
  16. Prakash JSS, Srivastava A, Strasser RJ, Mohanty P (2003) Senescence-induced alterations in the photosystem II functions of Cucumis sativus cotyledons: probing of senescence driven alterations of photosystem II by chlorophyll a fluorescence induction O-J-I-P transients. Indian J Biochem Biophys 40:160–168Google Scholar
  17. Rai M, Acharya D, Singh A, Varma A. (2001) Positive growth responses of the medicinal plants, Spilanthus calva and Withania somnifera to inoculation by Piriformospora indica in field trials. Mycorrhiza 11:123–128CrossRefGoogle Scholar
  18. Schmitz P, Maldonado-Rodriguez R, Strasser RJ (2001) Evaluation of the nodulated status of Vigna unguiculata probed by the JIP-test based on the chlorophyll a fluorescence rise. In: CSIRO (ed) Proceedings of the 12th international congress on photosynthesis. CSIRO, Collingwood, S36–012Google Scholar
  19. Srivastava A, Strasser RJ (1995) How do land plants respond to stress temperature and stress light? Arch Sci Genève 48:135–145Google Scholar
  20. Srivastava A, Strasser RJ (1996) Stress and stress management of land plants during a regular day. J Plant Physiol 148:445–455Google Scholar
  21. Srivastava A, Guisse B, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in PS II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient OKJIP. Biochim Biophys Acta 1320:95–106CrossRefGoogle Scholar
  22. Strasser RJ (1978) The grouping model of plant photosynthesis. In: Akoyunoglou G (ed) Chloroplast development. Elsevier, Dordrecht, pp 513–524Google Scholar
  23. Strasser RJ (1981) The grouping model of plant photosynthesis: heterogeneity of photosynthetic units in thylakoids. In: Akoyunoglou G (ed) Photosynthesis III. Structure and molecular organisation of the photosynthetic apparatus. Balaban International Science Services, Philadelphia, pp 727–737Google Scholar
  24. Strasser RJ (1985) Dissipative Strukturen als Thermodynamischer Regelkreis des Photosyntheseapparates. Ber Deutsche Bot Ges Bd 98:53–72Google Scholar
  25. Strasser RJ, Govindjee (1992) The F0 and the O-J-I-P fluorescence rise in higher plants and algae. In: Argyroudi-Akoyunoglou JH (ed) Regulation of chloroplast biogenesis. Plenum, New York pp 423–426Google Scholar
  26. Strasser RJ, Tsimilli-Michael M (1998) Activity and heterogeneity of PS II probed in vivo by the chlorophyll a fluorescence rise O-(K)-J-I-P. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol V. Kluwer Academic, Rotterdam, pp 4321–4324Google Scholar
  27. Strasser RJ, Tsimilli-Michael M (2001) Stress in plants, from daily rhythm to global changes, detected and quantified by the JIP-test. Chim Nouv 75:3321–3326Google Scholar
  28. Strasser RJ, Tsimilli-Michael M (2005) State-changes realising adaptation to stress as the result of an optimized redistribution of functional microstates. In: van Est A, Bruce D (eds) Photosynthesis: fundamental aspects to global perspectives. Allen, Montreal, pp 537–540Google Scholar
  29. Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42Google Scholar
  30. Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis, London, pp 443–480Google Scholar
  31. Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis. (Advances in photosynthesis and respiration series, vol 19) Kluwer Academic, Rotterdam, pp 321–362Google Scholar
  32. Tóth SZ, Schansker G, Strasser RJ (2005) In intact leaves, the maximum fluorescence level (FM) is independent of the redox state of the plastoquinone pool: a DCMU-inhibition study. Biochim Biophys Acta 1708:275–282PubMedCrossRefGoogle Scholar
  33. Tsimilli-Michael M, Strasser RJ (2001) Fingerprints for climate changes on the behaviour of the photosynthetic apparatus, monitored by the JIP-test. A case study on light and heat stress adaptation of the symbionts of temperate and coral reef foraminifers in hospite. In: Walther G-R, Burga CA, Edwards PJ (eds) Fingerprints of climate changes — adapted behaviour and shifting species ranges. Kluwer, New York, pp 229–247Google Scholar
  34. Tsimilli-Michael M, Strasser RJ (2002) Mycorrhization as a stress adaptation procedure. In: Gianinazzi S, Haselwandter K, Schüepp H, Barea JM (eds) Mycorrhiza technology in agriculture: from genes to bioproducts. Birkhauser, Basel, pp 199–209Google Scholar
  35. Tsimilli-Michael M, Krüger GHJ, Strasser RJ (1995) Suboptimality as driving force for adaptation: a study about the correlation of excitation light intensity and the dynamics of fluorescence emission in plants. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol V. Kluwer Academic, Rotterdam, pp 981–984Google Scholar
  36. Tsimilli-Michael M, Krüger GHJ, Strasser RJ (1996) About the perpetual state changes in plants approaching harmony with their environment. Arch Sci Genève 49:173–203Google Scholar
  37. Tsimilli-Michael M, Pêcheux M, Strasser RJ (1998) Vitality and stress adaptation of the symbionts of coral reef and temperate foraminifers probed in hospite by the fluorescence kinetics O-J-I-P. Arch Sci Genève 51:1–36Google Scholar
  38. Tsimilli-Michael M, Pêcheux M, Strasser RJ (1999) Light and heat stress adaptation of the symbionts of temperate and coral reef foraminifers probed in hospite by the chlorophyll a fluorescence kinetics O-J-I-P. Z Naturforsch 54C:671–680Google Scholar
  39. Tsimilli-Michael M, Eggenberg P, Biro B, Köves-Pechy K, Vörös I, Strasser RJ (2000) Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the chlorophyll a polyphasic fluorescence transient O-J-I-P. Appl Soil Ecol 15:169–182CrossRefGoogle Scholar
  40. Van Rensburg L, Krüger GHJ, Eggenberg P, Strasser RJ (1996) Can screening criteria for drought resistance in Nicotiana tabacum L. be derived from the polyphasic rise of the chlorophyll a fluorescence transient (OJIP)? S Afr J Bot 62:337–341Google Scholar
  41. Van Heerden PDR, Tsimilli-Michael M, Krüger GHJ, Strasser RJ (2003) Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. Physiol Plant 117:476–491PubMedCrossRefGoogle Scholar
  42. Varma A, Verma S, Sudha, Sahay N, Britta B, Franken P (1999) Piriformospora indica — a cultivable plant growth promoting root endophyte with similarities to arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:2741–2744PubMedGoogle Scholar
  43. Varma A, Singh A, Sudha, Sahay N, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Franken P, Hurek T, Blechert O, Rexer K-H, Kost G, Hahn A, Hock B, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica: a cultivable mycorrhiza-like endosymbiotic fungus. In: Varma A, Hock B (eds) Mycota IX. Springer, Berlin Heidelberg New York, pp 123–150Google Scholar
  44. Verma S, Varma A, Rexer K-H, Hassel A, Kost G, Sarbhoy A, Bisen P, Buetehorn P, Franken P (1998) Piriformospora indica gen. nov., a new root-colonizing fungus. Mycologia 90:895–909CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Reto J. Strasser
    • 1
  • Merope Tsimilli-Michael
    • 1
    • 2
  • Devanand Dangre
    • 3
  • Mahendra Rai
    • 3
  1. 1.Laboratory of BioenergeticsUniversity of GenevaJussy-GenevaSwitzerland
  2. 2.NicosiaCyprus
  3. 3.Department of BiotechnologySGB Amravati UniversityAmravati, MaharashtraIndia

Personalised recommendations