Advertisement

Hopcroft’s Minimization Technique: Queues or Stacks?

  • Andrei Păun
  • Mihaela Păun
  • Alfonso Rodríguez-Patón
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5148)

Abstract

We consider the absolute worst case time complexity for Hopcroft’s minimization algorithm applied to unary languages (or a modification of this algorithm for cover automata minimization). We show that in this setting the worst case is reached only for deterministic automata or cover automata following the structure of the de Bruijn words. We refine a previous result by showing that the Berstel/Carton example reported before is actually the absolute worst case time complexity in the case of unary languages for deterministic automata. We show that the same result is valid also when considering the setting of cover automata and an algorithm based on the Hopcroft’s method used for minimization of cover automata. We also show that a LIFO implementation for the splitting list is desirable for the case of unary languages in the setting of deterministic finite automata.

Keywords

Regular Language Splitting Sequence Deterministic Finite Automaton Deterministic Automaton Unary Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baclet, M., Pagetti, C.: Around Hopcroft’s Algorithm. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 114–125. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Berstel, J., Carton, O.: On the complexity of Hopcrofts state minimization algorithm. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 35–44. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    de Bruijn, N.G.: A Combinatorial Problem. Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946)Google Scholar
  4. 4.
    Câmpeanu, C., Păun, A., Yu, S.: An Efficient Algorithm for Constructing Minimal Cover Automata for Finite Languages. International Journal of Foundations of Computer Science 13(1), 83–97 (2002)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Câmpeanu, C., Salomaa, K., Yu, S.: Tight Lower Bound for the State Complexity of Shuffle of Regular Languages. Journal of Automata, Languages and Combinatorics 7(3), 303–310 (2002)MATHMathSciNetGoogle Scholar
  6. 6.
    Câmpeanu, C., Sântean, N., Yu, S.: Minimal Cover-Automata for Finite Languages. In: Champarnaud, J.-M., Maurel, D., Ziadi, D. (eds.) WIA 1998. LNCS, vol. 1660, pp. 32–42. Springer, Heidelberg (1999); Theoretical Computer Science 267, 3–16 (2001) CrossRefGoogle Scholar
  7. 7.
    Champarnaud, J.M., Maurel, D.: Automata Implementation. In: Champarnaud, J.-M., Maurel, D., Ziadi, D. (eds.) WIA 1998. LNCS, vol. 1660. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Domaratzki, M., Shallit, J., Yu, S.: Minimal Covers of Formal Languages. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 319–329. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Gries, D.: Describing an algorithm by Hopcroft. Acta Informatica 2, 97–109 (1973)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hopcroft, J.E., Ullman, J.D., Motwani, R.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (2001)MATHGoogle Scholar
  11. 11.
    Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton. In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and Computations, pp. 189–196. Academic Press, London (1971)Google Scholar
  12. 12.
    Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Knuutila, T.: Re-describing an algorithm by Hopcroft. Theoretical Computer Science 250(1-2), 333–363 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Körner, H.: A Time and Space Efficient Algorithm for Minimizing Cover Automata for Finite Languages. International Journal of Foundations of Computer Science 14(6), 1071–1086 (2003)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Paige, R., Tarjan, R.E., Bonic, R.: A Linear Time Solution to the Single Function Coarsest Partition Problem. Theoretical Computer Science 40, 67–84 (1985)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Păun, A., Santean, N., Yu, S.: An O(n 2) Algorithm for Constructing Minimal Cover Automata for Finite Languages. In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 243–251. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Salomaa, A.: Formal Languages. Academic Press, London (1973)MATHGoogle Scholar
  18. 18.
    Salomaa, K., Wu, X., Yu, S.: Efficient Implementation of Regular Languages Using Reversed Alternating Finite Automata. Theor. Comput. Sci. 231(1), 103–111 (2000)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Sântean, N.: Towards a Minimal Representation for Finite Languages: Theory and Practice. MSc Thesis, Department of Computer Science, The University of Western Ontario (2000)Google Scholar
  20. 20.
    Yu, S.: Regular Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 41–110. Springer, Heidelberg (1998)Google Scholar
  21. 21.
    Yu, S.: State Complexity of Finite and Infinite Regular Languages. Bulletin of the EATCS 76, 142–152 (2002)MATHGoogle Scholar
  22. 22.
    Yu, S.: State Complexity: Recent Results and Open Problems. Fundam. Inform. 64(1-4), 471–480 (2005)MATHGoogle Scholar
  23. 23.
    Yu, S.: On the State Complexity of Combined Operations. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 11–22. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Wood, D., Yu, S.: Automata Implementation. In: Proceedings of Second International Workshop on Implementing Automata. LNCS, vol. 1436. Springer, Heidelberg (1998)Google Scholar
  25. 25.
    The Grail + Project. A symbolic computation environment for finite state machines, regular expressions, and finite languages, http://www.csd.uwo.ca/research/grail/

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andrei Păun
    • 1
    • 2
    • 3
  • Mihaela Păun
    • 4
  • Alfonso Rodríguez-Patón
    • 3
  1. 1.Bioinformatics DepartmentNational Institute of Research and Development for Biological SciencesBucharestRomania
  2. 2.Department of Computer ScienceLouisiana Tech University, RustonLouisianaUSA
  3. 3.Departamento de Inteligencia Artificial, Facultad de InformáticaUniversidad Politécnica de MadridMadridSpain
  4. 4.Department of Mathematics and StatisticsLouisiana Tech University, RustonLouisianaUSA

Personalised recommendations