Advertisement

On Complexity of Two Dimensional Languages Generated by Transducers

  • Egor Dolzhenko
  • Nataša Jonoska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5148)

Abstract

We consider two-dimensional languages, called here 2d transducer languages, generated by iterative applications of transducers (finite state automata with output). To each transducer a two-dimensional language consisting of blocks of symbols is associated: the bottom row of a block is an input string accepted by the transducer and, by iterative application of the transducer, each row of the block is an output of the transducer on the preceding row. We observe that this class of languages is a proper subclass of recognizable picture languages containing the class of all factorial local 2d languages. By taking the average growth rate of the number of blocks in the language as a measure of its complexity, also known as the entropy of the language, we show that every entropy value of a one-dimensional regular language can be obtained as an entropy value of a 2d transducer language.

Keywords

Transducers Finite State Automata with Output Entropy Picture Languages Local Languages 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anselmo, M., Giammarresi, D., Madonia, M.: Tiling automaton: a computational model for recognizable two-dimensional languages. In: Holub, J., Žd’árek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 290–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Anselmo, M., Giammarresi, D., Madonia, M.: From determinism to non-determinism in recognizable two-dimensional languages. In: Harju, T., Karhumäki, J., Lepisto, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 36–47. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambiguous recognizable two-dimensional languages. RAIRO - Inf. Theor. Appl. 40, 277–293 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chakraborty, B., Jonoska, N., Seeman, N.C.: Programmable tranducer by DNA self-assembly (submitted)Google Scholar
  5. 5.
    Giammarresi, D., Restivo, A.: Recognizable picture languages. In: Nivat, M., Saoudi, A., Wang, P.S.P. (eds.) Proc. 1st Internat. Colloq. on Parallel Image Processing; also in Internat. J. Pattern Recognition Artif. Intell. 6, 231–256 (1992) Google Scholar
  6. 6.
    Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Handbook of Formal Languages, vol. 3, pp. 215–267. Springer, Berlin (1997)Google Scholar
  7. 7.
    Gottschalk, W.H., Hedlund, G.A.: Topological Dynamics. AMS Colloquium Pubs. 36 (1955)Google Scholar
  8. 8.
    Jonoska, N., Liao, S., Seeman, N.C.: Transducers with programmable input by DNA self-assembly. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 219–240. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Jonoska, N., Pirnot, J.B.: Transitivity in two-dimensional local languages defined by dot systems. International Journal of Foundations of Computer Science 17, 435–464 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jonoska, N., Pirnot, J.B.: Finite state automata representing two-dimensional subshifts. In: Holub, J., Žd’árek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 277–289. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Kari, J.: A small aperiodic set of Wang tiles. Discrete Math. 160(1-3), 259–264 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kari, J., Moore, C.: Rectangles and squares recognized by two-dimensional automata, http://www.santafe.edu/~moore/pubs/picture.html
  13. 13.
    Kari, J., Moore, C.: New results on alternating and non-deterministic two-dimensional finite automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 396–406. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Kari, J.: private communicationGoogle Scholar
  15. 15.
    Kitchens, B., Schmidt, K.: Automorphisms of compact groups. Ergod. Th. & Dynam. Sys. 9, 691–735 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Kitchens, B., Schmidt, K.: Markov subgroups of \(({\mathbb Z}/2{\mathbb Z})^{\mathbb Z^2}\). In: Walters, P. (ed.) Symbolic Dynamics and its Applications; Contemporary Mathematics 135, 265–283 (1992)Google Scholar
  17. 17.
    Latteux, M., Simplot, D., Terlutte, A.: Iterated Length-Preserving Rational Transductions. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 286–295. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  19. 19.
    Manca, V., Martin-Vide, C., Păun, G.: New computing paradigms suggested by DNA computing: computing by carving. BioSystems 52, 47–54 (1999)CrossRefGoogle Scholar
  20. 20.
    Păun, G.: On the iteration of gsm mappings. Rev. Roum. Math. Pures Appl. 23(4), 921–937 (1978)zbMATHGoogle Scholar
  21. 21.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  22. 22.
    Winfree, E.: Algorithmic self-assembly of DNA: theoretical motivations and 2D assembly experiments. Journal of Biomolecular Structure and Dynamics 11 (S2), 263–270 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Egor Dolzhenko
    • 1
  • Nataša Jonoska
    • 1
  1. 1.University of South FloridaUSA

Personalised recommendations