Persistent Computations of Turing Machines

  • Harald Hempel
  • Madlen Kimmritz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5148)

Abstract

In this paper we formally define the notion of persistent Turing machines to model interactive computations. We compare the power of persistent computations with their classical counterparts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A85]
    Althöfer, I.: Das Dreihirn—Entscheidungsteilung im Schach. Computerschach & Spiele, 20–22 (December 1985)Google Scholar
  2. [AS03]
    Althöfer, I., Snatzke, R.G.: Playing Games with Multiple Choice Systems. In: Schaeffer, J., Müller, M., Björnsson, Y. (eds.) CG 2002. LNCS, vol. 2883, pp. 142–153. Springer, Heidelberg (2003)Google Scholar
  3. [BF04]
    Brand, M., Frisken, S., Lesh, N., Marks, J., Nikovski, D., Perry, R., Yedidia, J.: Theory and Applied Computing: Observations and Anecdotes. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 106–118. Springer, Heidelberg (2004)Google Scholar
  4. [GW98]
    Goldin, D., Wegner, P.: Persistence as a form of interaction, Technical Report CS-98-07, Brown University, Department of Computer Science (1998)Google Scholar
  5. [HK]
    Hempel, H., Kimmritz, M.: Aspects of Persistent Computations (unpublished)Google Scholar
  6. [Ko98]
    Kosub, S.: Persistent Computations, Technical Report No. 217, Julius-Maximilians-Universität Würzburg, Institut für Informatik (1998)Google Scholar
  7. [KL02]
    Klau, G., Lesh, N., Marks, J., Mitzenmacher, M.: Human-guided tabu search. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence, Fourteenth Conference on Innovative Applications of Artificial Intelligence 2002, pp. 41–47. AAAI Press, Menlo Park (2002)Google Scholar
  8. [LM03]
    Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for simplified protein folding. In: Proceedings of the Seventh Annual International Conference on Research in Computational Molecular Biology, pp. 188–195 (2003)Google Scholar
  9. [LM03a]
    Lesh, N., Marks, J., McMahon, A., Mitzenmacher, M.: New exhaustive, heuristic, and interactive approaches to 2D rectengular strip packing, TR2003-05. Mitsubishi Electric Research Laboratories, Cambridge (May 2003)Google Scholar
  10. [Ro50]
    Robinson, R.: General recursive functions. Proceedings of the American Mathematical Society 1, JO 3-718 (1950)CrossRefGoogle Scholar
  11. [Ro67]
    Rogers, H.: The Theory of Recursive Functions and Effective Computability, 2nd edn. (1987). MIT Press, Cambridge (1967)Google Scholar
  12. [Sch92]
    Schöning, U.: Theoretische Informatik kurz gefasst, Mannheim; Leipzig; Wien; Zürich: BI-Wissenschaftsverlag (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Harald Hempel
    • 1
  • Madlen Kimmritz
    • 2
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Mathematisches SeminarChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations