Advertisement

Tree-Series-to-Tree-Series Transformations

  • Andreas Maletti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5148)

Abstract

We investigate the tree-series-to-tree-series (ts-ts) transformation computed by tree series transducers. Unless the used semiring is complete, this transformation is, in general, not well-defined. In practice, many used semirings are not complete (like the probability semiring). We establish a syntactical condition that guarantees well-definedness of the ts-ts transformation in arbitrary commutative semirings. For positive (ie, zero-sum and zero-divisor free) semirings the condition actually characterizes the well-definedness, so that well-definedness is decidable in this scenario.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuich, W.: Tree transducers and formal tree series. Acta Cybernet 14(1), 135–149 (1999)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Engelfriet, J., Fülöp, Z., Vogler, H.: Bottom-up and top-down tree series transformations. J. Autom.Lang.Combin. 7(1), 11–70 (2002)zbMATHGoogle Scholar
  3. 3.
    Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4(3), 257–287 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System Sci. 4(4), 339–367 (1970)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Thatcher, J.W.: Tree automata—an informal survey. In: Currents in the Theory of Computing, pp. 143–172. Prentice Hall, Englewood Cliffs (1973)Google Scholar
  6. 6.
    Engelfriet, J.: Bottom-up and top-down tree transformations—a comparison. Math. Systems Theory 9(3), 198–231 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems Theory 10(1), 289–303 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    May, J., Knight, K.: Tiburon: A weighted tree automata toolkit. In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 102–113. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Hebisch, U., Weinert, H.J.: Semirings—Algebraic Theory and Applications in Computer Science. World Scientific, Singapore (1998)zbMATHGoogle Scholar
  10. 10.
    Golan, J.S.: Semirings and their Applications. Kluwer Academic, Dordrecht (1999)zbMATHGoogle Scholar
  11. 11.
    Bozapalidis, S., Louscou-Bozapalidou, O.: The rank of a formal tree power series. Theoret. Comput. Sci. 27(1–2), 211–215 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Systems 32(1), 1–33 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kuich, W.: Formal power series over trees. In: Proc.3rd Int.Conf. Developments in Language Theory, Aristotle University of Thessaloniki, pp. 61–101 (1998)Google Scholar
  14. 14.
    Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata. J. Autom. Lang. Combin. 8(3), 417–463 (2003)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Kuich, W.: Full abstract families of tree series I. In: Jewels Are Forever, pp. 145–156. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Maletti, A.: Pure and o-substitution. Int. J. Found.Comput.Sci. 18(4), 829–845 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Salomaa, A., Soittala, M.: Theoretic Aspects of Formal Power Series. Springer, Heidelberg (1978)zbMATHGoogle Scholar
  18. 18.
    Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Monographs in Theoretical Computer Science. An EATCS Series, vol. 5. Springer, Heidelberg (1986)zbMATHGoogle Scholar
  19. 19.
    Bozapalidis, S.: Context-free series on trees. Inform. and Comput. 169(2), 186–229 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Maletti, A.: The power of tree series transducers of type I and II. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 338–349. Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Maletti, A.: Hierarchies of tree series transformations revisited. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 215–225. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Andreas Maletti
    • 1
  1. 1.International Computer Science Institute BerkeleyUSA

Personalised recommendations