Extraction and Visualization of Swirl and Tumble Motion from Engine Simulation Data

  • Christoph Garth
  • Robert S. Laramee
  • Xavier Tricoche
  • Jürgen Schneider
  • Hans Hagen
Part of the Mathematics and Visualization book series (MATHVISUAL)


An optimal combustion process within an engine block is central to the performance of many motorized vehicles. Associated with this process are two important patterns of flow: swirl and tumble motion, which optimize the mixing of fluid within each of an engine's cylinders. The simulation data associated with in-cylinder tumble motion within a gas engine, given on an unstructured, timevarying and adaptive resolution CFD grid, demands robust visualization methods that apply to unsteady flow. Good visualizations are necessary to analyze the simulation data of these in-cylinder flows. We present a range of methods including integral, feature-based, and image-based schemes with the goal of extracting and visualizing these two important patterns of motion. We place a strong emphasis on automatic and semi-automatic methods, including topological analysis, that require little or no user input.We make effective use of animation to visualize the time-dependent simulation data. We also describe the challenges and implementation measures necessary in order to apply the presented methods to time-varying, volumetric grids.


Diesel Engine Vortex Core Vortex System Boundary Topology IEEE Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bauer and R. Peikert. Vortex Tracking in Scale-Space. In Data Visualization 2002. Proc. VisSym ’02, 2002.Google Scholar
  2. 2.
    C. Garth, R. S. Laramee, X. Tricoche, J. Schneider, and H. Hagen. Extraction and visualization of swirl and tumble motion from engine simulation data (companion video).
  3. 3.
    C. Garth, X. Tricoche, T. Salzbrunn, and G. Scheuermann. Surface Techniques for Vortex Visualization. In Proceedings Eurographics - IEEE TCVG Symposium on Visualization, 2004.Google Scholar
  4. 4.
    A. Globus, C. Levit, and T. Lasinski. A tool for visualizing the topology if three-dimensional vector fields. In IEEE Visualization Proceedings, pages 33 40, October 1991.Google Scholar
  5. 5.
    J. P. M. Hultquist. Constructing Stream Surfaces in Steady 3D Vector Fields. In A. E. Kaufman and G. M. Nielson, editors, IEEE Visualization ’92, pages 171-178, Boston, MA, 1992.Google Scholar
  6. 6.
    Jinhee Jeong and Fazle Hussain. On the Identification of a Vortex. Journal of Fluid Mechanics, pages 69-94, 285 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    D. Kenwright, C. Henze, and C. Levit. Feature extraction of separation and attachment lines. IEEE Transactions on Visualization and Computer Graphics, 5(2):135-144, 1994.CrossRefGoogle Scholar
  8. 8.
    J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer functions for interactive volume rendering. IEEE Transactions on Visualization and Computer Graphics, 8(3):270-285, July-September 2002.CrossRefGoogle Scholar
  9. 9.
    R. S. Laramee, D. Weiskopf, J. Schneider, and H. Hauser. Investigating Swirl and Tumble Flow with a Comparison of Visualization Techniques. In Proceedings IEEE Visualization ’04, pages 51-58, 2004.Google Scholar
  10. 10.
    K. Polthier and M. Schmies. Straightest Geodesics on Polyhedral Surfaces. In Hans-Christian Hege and Konrad Polthier, editors, Mathematical Visualization, pages 135-150. Springer Verlag, Heidelberg, 1998.Google Scholar
  11. 11.
    F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. Feature Extraction and Visualization of Flow Fields. In Eurographics 2002 State-of-theArt Reports, pages 69-100, 2-6 September 2002.Google Scholar
  12. 12.
    G. Scheuermann and X. Tricoche. Topological methods for flow visualization. In C.D. Hansen and C.R. Johnson, editors, The Visualization Handbook, pages 341-356. Elsevier, 2005.Google Scholar
  13. 13.
    D. Stalling. Fast Texture-based Algorithms for Vector Field Visualization. PhD thesis, Freie Universität Berlin, 1998.Google Scholar
  14. 14.
    S. Stegmaier and T. Ertl. A Graphics Hardware-based Vortex Detection and Visualization System. In Proceedings of IEEE Visualization ’04, pages 195-202, 2004.Google Scholar
  15. 15.
    H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Saddle Connectors - An Approach to Visualizing the Topological Skeleton of Complex 3D Vector Fields. In IEEE Visualization ’03, 2003.Google Scholar
  16. 16.
    X. Tricoche, C. Garth, G. Kindlmann, E. Deines, G. Scheuermann, M. Rütten, and C. Hansen. Vizualization of Intricate Flow Structures for Vortex Breakdown Analysis. In Proceedings of IEEE Visualization, pages 187-194, October 2004.Google Scholar
  17. 17.
    X. Tricoche, C. Garth, and G. Scheuermann. Fast and robust extraction of separation line features. In Proceedings of the Dagstuhl Scientific Visualization Seminar, 2003. to appear.Google Scholar
  18. 18.
    V. Verma, D. Kao, and A. Pang. A Flow-guided Streamline Seeding Strategy. In Proceedings of IEEE Visualization ’00, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Christoph Garth
  • Robert S. Laramee
  • Xavier Tricoche
  • Jürgen Schneider
    • 1
  • Hans Hagen
  1. 1.AVLGrazAustria

Personalised recommendations