Topology Based Flow Analysis and Superposition Effects

  • Julia Ebling
  • Alexander Wiebel
  • Christoph Garth
  • Gerik Scheuermann
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


Using topology for feature analysis in flow fields faces several problems. First of all, not all features can be detected using topology based methods. Second, while in flow feature analysis the user is interested in a quantification of feature parameters like position, size, shape, radial velocity and other parameters of feature models, many of these parameters can not be determined using topology based methods alone. Additionally, in some applications it is advantageous to regard the vector field as a superposition of several, possibly simple, features. As topology based methods are quite sensitive to superposition effects, their precision and usability is limited in these cases. In this paper, topology based analysis and visualization of flow fields is estimated and compared to other feature based approaches demonstrating these problems.


Particle Image Velocimetry Pattern Match Vortex Core Velocity Magnitude Template Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. L. Burley, T. F. Brooks, B. G. van der Wall, H. Richard, M. Raffel, P. Beaumier, Y. Delrieux, J. W. Lim, Y. H. Yu, C. Tung, K. Pengel, and E. Mercker. Rotor wake vortex definition - initial evaluation of results of the HARTII study. In 28th EUROPEAN ROTORCRAFT FORUM, Bristol, England, 2002.Google Scholar
  2. 2.
    J. Ebling and G. Scheuermann. Clifford convolution and pattern matching on vector fields. In Proceedings of IEEE Visualization 2003, pages 193-200, Los Alamitos, CA, 2003. IEEE Computer Society.Google Scholar
  3. 3.
    J. Ebling and G. Scheuermann. Fourier transform on multivector fields. IEEE Transactions on Visualization and Computer Graphics, 11(4):469-479, 2005.CrossRefGoogle Scholar
  4. 4.
    J. Ebling, G. Scheuermann, and B.G. van der Wall. Analysis and visualization of 3-c piv images from HART II using image processing methods. In Data Visualization 2005, pages 161-168, 2005.Google Scholar
  5. 5.
    E. B. Heiberg, T. Ebbers, L. Wigström, and M. Karlsson. Three dimensional flow characterization using vector pattern matching. IEEE Transactions on Visualization and Computer Graphics, 9(3):313-319, 2003.CrossRefGoogle Scholar
  6. 6.
    J. Jeong and F. Hussain. On the identification of a vortex. Journal of Fluid Mechanics, 285:69-94, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    K. Polthier and E. Preuß. Variational approach to vector field decomposition. In Data Visualization 2000, pages 113-134, 2000.Google Scholar
  8. 8.
    K. Polthier and E. Preuß. Identifying vector field singularities using a discrete hodge decomposition. Visualization and Mathematics III, pages 775-792, 2003.Google Scholar
  9. 9.
    F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleitsch. The state of the art in flow visualization: Feature extraction and tracking. Computer Graphics Forum, 22(4):775-792, 2003.CrossRefGoogle Scholar
  10. 10.
    W.J.M. Rankine. Manual of Applied Mechanics. C. Griffen Co., London, 1858.Google Scholar
  11. 11.
    M. Roth. Automatic Extraction Of Vortex Core Lines And Other Line Type Features For Scientific Visualization. PhD thesis, ETH, 2000.Google Scholar
  12. 12.
    M.P. Scully. Computation of helicopter rotor wake geometry and it’s influence on rotor harmonic airloads. Technical Report ASRL TR 178-1, Masachussetts Institute of Technology, March 1975.Google Scholar
  13. 13.
    B. Shneiderman. The eyes have it: A task by data type taxonomy for information visualizations. In Proceedings of the IEEE Symposium on Visual Languages, pages 336-343, Washington, 1996. IEEE Computer Society Press.CrossRefGoogle Scholar
  14. 14.
    Y. Tong, S. Lombeyda, A. Hirani, and M. Desbrun. Discrete multiscale vector field decomposition. ACM Transactions on Graphics, 22(3):445-452, 2003.CrossRefGoogle Scholar
  15. 15.
    T. Urness, V. Interante, E. Logmire, I. Marusic, and B. Ganapathisubramani. Interactive poster: Illustrating different convection velocities of turbulent flow. In Poster Compendium of IEEE Visualization 2004, Los Alamitos, CA, 2004. IEEE Computer Society Press.Google Scholar
  16. 16.
    B. G. van der Wall, C. L. Burley, Y. H. Yu, H. Richard, K. Pengel, and P. Beaumier. The HART II test - measurement of helicopter rotor wakes. Aerospace Science and Technology, 8(4):273-284, 2004.CrossRefGoogle Scholar
  17. 17.
    G.H. Vatistas. New model for intense self-similar vortices. Experiments in Fluids, 14(4):462-469, 1998.Google Scholar
  18. 18.
    A. Wiebel, C. Garth, and G. Scheuermann. Localized flow analysis of 2d and 3d vector fields. In Data Visualization 2005, pages 143-150. Eurographics Association, 2005.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Julia Ebling
  • Alexander Wiebel
  • Christoph Garth
  • Gerik Scheuermann

There are no affiliations available

Personalised recommendations