Advertisement

Topology-based versus Feature-based Flow Analysis – Challenges and an Application

  • Helwig Hauser
  • Robert S. Laramee
  • Helmut Doleisch
Part of the Mathematics and Visualization book series (MATHVISUAL)

Summary

This paper is the result of research and contemplation on the actual usefulness of topology-based methods in real-world applications. We recapitulate commonly used arguments in favor of topology-based approaches first to realign our expectations with respect to the utilization of topology extraction in the context of concrete applications. To illustrate some of our considerations, we take a closer look at one specific example, i.e., the visual analysis of flow through a cooling jacket and we report our respective experiences. After discussing the topology-based analysis of the cooling jacket case, we contrast topology-based flow visualization with an alternative approach, i.e., the interactive feature extraction for feature-based visualization. Without generalizing just from the one concrete example scenario, we still are able to conclude with some broader experiences which we have made in the past and which seem to align well with the opinion of others in our field.

Keywords

Flow Visualization Cooling Jacket IEEE Visualization Visual Clutter Context Visualization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Bejan and A. Kraus. Heat Transfer Handbook. John Wiley & Sons, 2003.Google Scholar
  2. 2.
    H. Doleisch. Visual Analysis of Complex Simulation Data using Multiple Heterogeneous Views. PhD thesis, Vienna University of Technology, Austria, 2004.Google Scholar
  3. 3.
    H. Doleisch, M. Gasser, and H. Hauser. Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data. In Data Visualization, Proc. 5th Joint EG - IEEE TCVG Symp. on Vis., pages 239-248, 2003.Google Scholar
  4. 4.
    H. Doleisch and H. Hauser. Smooth Brushing for Focus and Context Visualization of Simulation Data in 3D. In Proc. WSCG 2002, pages 147-151, 2002.Google Scholar
  5. 5.
    H. Doleisch, M. Mayer, M. Gasser, P. Priesching, and H. Hauser. Interactive Feature Specification for Simulation Data on Time-Varying Grids. In Proceedings of Simulation and Visualization 2005 (SimVis 2005), pages 291-304, 2005.Google Scholar
  6. 6.
    H. Doleisch, M. Mayer, M. Gasser, R. Wanker, and H. Hauser. Case Study: Visual Analysis of Complex, Time-Dependent Simulation Results of a Diesel Exhaust System. In Data Visualization, Proc. VisSym, pages 91-96, 2004.Google Scholar
  7. 7.
    A. Globus and E. Raible. Fourteen Ways to Say Nothing with Scientific Visualization. In IEEE Computer, pages 86-88, 1994.Google Scholar
  8. 8.
    R. S. Laramee, Chr. Garth, H. Doleisch, J. Schneider, H. Hauser, and H. Hagen. Visual Analysis and Exploration of Fluid Flow in a Cooling Jacket. In Proceedings of IEEE Visualization 2005, pages 623-630. IEEE Computer Society, 2005.Google Scholar
  9. 9.
    R. S. Laramee, H. Hauser, H. Doleisch, Fr. H. Post, B. Vrolijk, and D. Weiskopf. The State of the Art in Flow Visualization: Dense and Texture-Based Techniques. Computer Graphics Forum, 23(2):203-221, 2004.CrossRefGoogle Scholar
  10. 10.
    R. S. Laramee, H. Hauser, H. Doleisch, Fr. H. Post, and L. Zhao. Topologybased Flow Visualization, the State of the Art. In Topology-based Methods in Visualization. Springer. (chapter 1 of this book).Google Scholar
  11. 11.
    K. M. Mahrous, J. C. Bennett, B. Hamann, and K. I. Joy. Improving Topological Segmentation of Three-dimensional Vector Fields. In Data Visualization, Proc. 5th Joint EG - IEEE TCVG Symp. on Vis., pages 203-212, 2003.Google Scholar
  12. 12.
    Fr. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. Feature Extraction and Visualization of Flow Fields. In Eurographics 2002 State-of-theArt Reports, pages 69-100, 2002.Google Scholar
  13. 13.
    Fr. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The State of the Art in Flow Visualization: Feature Extraction and Tracking. Computer Graphics Forum, 22(4):775-792, 2003.CrossRefGoogle Scholar
  14. 14.
    J. Sahner, T. Weinkauf, and H.-Chr. Hege. Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines. In Proceedings of the Joint Eurographics - IEEE VGTC Symposium on Visualization (EuroVis 05), 2005.Google Scholar
  15. 15.
    D. Stalling, M. Zöckler, and H.-Chr. Hege. Fast Display of Illuminated Field Lines. IEEE Transactions on Visualization and Computer Graphics, 3(2), 1997.Google Scholar
  16. 16.
    D. Sujudi and R. Haimes. Identification of Swirling Flow in 3D Vector Fields. Technical Report AIAA Paper 95-1715, Am. Inst. of Aeron. & Astron., 1995.Google Scholar
  17. 17.
    X. Tricoche, Chr. Garth, G. Kindlmann, E. Deines, G. Scheuermann, M. Rütten, and H. Hagen. Visualization of Intricate Flow Structures for Vortex Breakdown Analysis. In Proc. IEEE Visualization 2004, pages 187-194, 2004.Google Scholar
  18. 18.
    J. J. van Wijk. The Value of Visualization. In Proceedings of IEEE Visualization 2005, pages 79-86. IEEE Computer Society, 2005.Google Scholar
  19. 19.
    F. M. White. Heat Transfer. Addison-Wesley, 1984.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Helwig Hauser
    • 1
  • Robert S. Laramee
    • 2
  • Helmut Doleisch
    • 3
  1. 1.VRVis Research CenterViennaAustria
  2. 2.Department of Computer ScienceSwansea UniversityUK
  3. 3.VRVis Research CenterViennaustria

Personalised recommendations