Advertisement

Topology-Based Flow Visualization, The State of the Art

  • Robert S. Laramee
  • Helwig Hauser
  • Lingxiao Zhao
  • Frits H. Post
Part of the Mathematics and Visualization book series (MATHVISUAL)

Summary

Flow visualization research has made rapid advances in recent years, especially in the area of topology-based flow visualization. The ever increasing size of scientific data sets favors algorithms that are capable of extracting important subsets of the data, leaving the scientist with a more manageable representation that may be visualized interactively. Extracting the topology of a flow achieves the goal of obtaining a compact representation of a vector or tensor field while simultaneously retaining its most important features. We present the state of the art in topology-based flow visualization techniques. We outline numerous topology-based algorithms categorized according to the type and dimensionality of data on which they operate and according to the goal-oriented nature of each method. Topology tracking algorithms are also discussed. The result serves as a useful introduction and overview to research literature concerned with the study of topology-based flow visualization.

Keywords

Vortex Core Vortex Tube Vortex Breakdown Attachment Line Valley Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. H. Abraham and C. D. Shaw.  Dynamics - the Geometry of Behavior. Addison-Wesley, 1992.Google Scholar
  2. 2.
    D. C. Banks and B. A. Singer. Vortex Tubes in Turbulent Flows: Identification, Representation, Reconstruction. In Proceedings IEEE Visualization ’94, pages 132-139, October 1994.Google Scholar
  3. 3.
    D. C. Banks and B. A. Singer. A Predictor-Corrector Technique for Visualizing Unsteady Flow. IEEE Transactions on Visualization and Computer Graphics, 1(2):151-163, June 1995.CrossRefGoogle Scholar
  4. 4.
    D. Bauer and R. Peikert. Vortex Tracking in Scale-Space. In Proceedings of the Symposium on Data Visualisation 2002, pages 233-240. Eurographics Association, 2002.Google Scholar
  5. 5.
    P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A Multi-resolution Data Structure for Two-Dimensional Morse-Smale Functions. In Proceedings IEEE Visualization 2003, pages 139-146, October 2003.Google Scholar
  6. 6.
    P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci.  Topological Hierarchy for Functions on Triangulated Surfaces. IEEE Transactions on Visualization and Computer Graphics, 10(4):385-396, July/Aug 2004.CrossRefGoogle Scholar
  7. 7.
    C. Carner, M. Jin, X. Gu, and H. Qiu.  Topology-driven Surface Mappings with Robust Feature Alignment. In Proceedings IEEE Visualization 2005, pages 543-550, October 2005.Google Scholar
  8. 8.
    W. de Leeuw and R. van Liere. Visualization of Global Flow Structures Using Multiple Levels of Topology. In Data Visualization ’99 (VisSym ’99), pages 45-52. May 1999.Google Scholar
  9. 9.
    W. de Leeuw and R. van Liere. Multi-level Topology for Flow Visualization. Computers and Graphics, 24(3):325-331, June 2000.CrossRefGoogle Scholar
  10. 10.
    W. C. de Leeuw and R. van Liere. Collapsing Flow Topology Using Area Metrics. In Proceedings IEEE Visualization ’99, pages 349-354, 1999.Google Scholar
  11. 11.
    T. Delmarcelle and L. Hesselink. The Topology of Symmetric, Second-Order Tensor Fields. In Proceedings IEEE Visualization ’94, 1994.Google Scholar
  12. 12.
    H. Doleisch, M. Mayer, M. Gasser, P. Priesching, and H. Hauser. Interactive Feature Specification for Simulation Data on Time-Varying Grids. In Conference on Simulation and Visualization 2005 (SimVis 2005), pages 291-304, 2005.Google Scholar
  13. 13.
    J. El-Sana and A. Varshney. Controlled Simplification of Genus for Polygonal Models. In Proceedings IEEE Visualization ’97, pages 403-412, October 1997.Google Scholar
  14. 14.
    C. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, and G. Scheuermann. Surface Techniques for Vortex Visualization. In Data Visualization, Proceedings of the 6th Joint IEEE TCVG-EUROGRAPHICS Symposium on Visualization (VisSym 2004), pages 155-164, May 2004.Google Scholar
  15. 15.
    C. Garth, X. Tricoche, and G. Scheuermann. Tracking of Vector Field Singularities in Unstructured 3D Time-Dependent Datasets. In Proceedings IEEE Visualization 2004, pages 329-335, 2004.Google Scholar
  16. 16.
    I. Guskov and Z. Wood. Topological Noise Removal. In Proceedings, Graphics Interface 2001, pages 19-26, 2001.Google Scholar
  17. 17.
    A. Gyulassy, V. Natarajan, V. Pascucci, P.-T. Bremer, and B. Hamann. Topology-based Simplification for Feature Extraction from 3D Scalar Fields. In Proceedings IEEE Visualization 2005, pages 535-542, 2005.Google Scholar
  18. 18.
    R. Haimes and D. Kenwright.  On the Velocity Gradient Tensor and Fluid Feature Extraction. Technical Report AIAA Paper 99-3288, American Institute of Aeronautics and Astronautics, 1999.Google Scholar
  19. 19.
    R. M. Haralick. Ridges and valleys on digital images. Computer Vision, Graphics, and Image Processing, 22(1):28-38, April 1983.CrossRefMathSciNetGoogle Scholar
  20. 20.
    B. Heckel, G. H. Weber, B. Hamann, and K. I. Joy. Construction of vector field hierarchies. In Proceedings IEEE Visualization ’99, pages 19-26, 1999.Google Scholar
  21. 21.
    J. L. Helman and L. Hesselink. Representation and Display of Vector Field Topology in Fluid Flow Data Sets. IEEE Computer, 22(8):27-36, August 1989.Google Scholar
  22. 22.
    J. L. Helman and L. Hesselink. Surface Representations of Two- and ThreeDimensional Fluid Flow Topology. In Proceedings IEEE Visualization ’90, pages 6-13, 1990.Google Scholar
  23. 23.
    J. L. Helman and L. Hesselink. Visualizing Vector Field Topology in Fluid Flows. IEEE Computer Graphics and Applications, 11(3):36-46, May 1991.CrossRefGoogle Scholar
  24. 24.
    L. Hesselink, Y. Levy, and Y. Lavin. The Topology of Symmetric, Second-Order 3D Tensor Fields. IEEE Transactions on Visualization and Computer Graphics, 3 (1):1-11, March 1997.CrossRefGoogle Scholar
  25. 25.
    M. Hlawitschka and G. Scheuermann. HOT Lines: Tracking Lines in Higher Order Tensor Fields.  In Proceedings IEEE Visualization 2005, pages 27-34, 2005.Google Scholar
  26. 26.
    V. Interrante, H. Fuchs, and S. Pizer. Enhancing Transparent Skin Surfaces with Ridge and Valley Lines.  In Proceedings IEEE Visualization ’95, pages 52-59, 1995.Google Scholar
  27. 27.
    J. Jeong and F. Hussain. On the Identification of a Vortex. Journal of Fluid Mechanics, 285:69-94, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    M. Jiang, R. Machiraju, and D. Thompson. A Novel Approach to Vertex Core Region Detection. In Proceedings of the Symposium on Data Visualisation 2002 (VisSym ’02), pages 217-225. Eurographics Association, 2002.Google Scholar
  29. 29.
    D. Kenwright and R. Haimes. Vortex Identification-Applications in Aerodynamics. In Proceedings IEEE Visualization ’97, pages 413-416, November 1997.Google Scholar
  30. 30.
    D. N. Kenwright. Automatic Detection of Open and Closed Separation and Attachment Lines. In Proceedings IEEE Visualization ’98, pages 151-158, 1998.Google Scholar
  31. 31.
    D. N. Kenwright and R. Haimes. Automatic Vortex Core Detection. IEEE Computer Graphics and Applications, 18(4):70-74, July/August 1998.CrossRefGoogle Scholar
  32. 32.
    D. N. Kenwright, C. Henze, and C. Levit. Features Extraction of Separation and Attachment Lines. IEEE Transactions on Visualization and Computer Graphics, 5(2):135-144, 1999.CrossRefGoogle Scholar
  33. 33.
    R. S. Laramee, C. Garth, H. Doleisch, J. Schneider, H. Hauser, and H. Hagen. Visual Analysis and Exploration of Fluid Flow in a Cooling Jacket. In Proceedings IEEE Visualization 2005, pages 623-630, 2005.Google Scholar
  34. 34.
    R. S. Laramee, C. Garth, J. Schneider, and H. Hauser. Texture-Advection on Stream Surfaces: A Novel Hybrid Visualization Applied to CFD Results. In Data Visualization, The Joint Eurographics-IEEE VGTC Symposium on Visualization (EuroVis 2006), pages 155-162,368. Eurographics Association, 2006.Google Scholar
  35. 35.
    R. S. Laramee, D. Weiskopf, J. Schneider, and H. Hauser. Investigating Swirl and Tumble Flow with a Comparison of Visualization Techniques. In Proceedings IEEE Visualization 2004, pages 51-58, 2004.Google Scholar
  36. 36.
    Y. Lavin, R. Kumar Batra, and L. Hesselink. Feature comparisons of vector fields using earth mover’s distance.  In Proceedings IEEE Visualization ’98, pages 103-110, 1998.Google Scholar
  37. 37.
    Y. Levy, D. Degani, and A. Seginer. Graphical Visualization of Vortical Flows by Means of Helicity. AIAA Journal, 28:1347-1352, 1990.CrossRefGoogle Scholar
  38. 38.
    S. K. Lodha, J. C. Renteria, and K. M. Roskin. Topology Preserving Compression of 2D Vector Fields. In Proceedings IEEE Visualization 2000, pages 343-350, 2000.Google Scholar
  39. 39.
    H. Löffelmann and M. E. Gröller. Enhancing the Visualization of Characteristic Structures in Dynamical Systems. In Proceedings of the 9th Eurographics Workshop on Visualization in Scientific Computing, pages 35-46, 1998.Google Scholar
  40. 40.
    K. Ma and V. Interrante. Extracting Feature Lines from 3D Unstructured Grids. In Proceedings IEEE Visualization ’97, pages 285-292, 1997.Google Scholar
  41. 41.
    K. Mahrous, J. C. Bennett, G. Scheuermann, B. Hamann, and K. I. Joy. Topological segmentation in three-dimensional vector fields. IEEE Transactions on Visualization and Computer Graphics, 10(2):198-205, 2004.CrossRefGoogle Scholar
  42. 42.
    K. M. Mahrous, J. C. Bennett, B. Hammann, and K. I. Joy. Improving Topological Segmentation of Three-dimensional Vector Fields. In Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization (VisSym 2003), pages 203-212, 2003.Google Scholar
  43. 43.
    S. Mann and A. Rockwood. Computing Singularities of 3D Vector Fields with Geometric Algebra. In Proceedings of IEEE Visualization 2002, pages 283-290, October 2002.Google Scholar
  44. 44.
    O. Monga, S. Benayoun, and O. Faugeras.  From Partial Derivatives of 3D Density Images to Ridge Lines. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern, pages 163-169, 1992.Google Scholar
  45. 45.
    X. Ni, M. Garland, and J. C. Hart. Fair Morse Functions for Extracting the Topological Structure of a Surface Mesh. ACM Transactions on Graphics (SIGGRAPH 2004), 23(3), 2004.Google Scholar
  46. 46.
    R. Peikert and M. Roth. The Parallel Vectors Operator - A Vector Field Visualization Primitive. In Proceedings of IEEE Visualization ’99, pages 263-270. IEEE Computer Society, 1999.Google Scholar
  47. 47.
    F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The State of the Art in Flow Visualization: Feature Extraction and Tracking. Computer Graphics Forum, 22(4):775-792, Dec. 2003.CrossRefGoogle Scholar
  48. 48.
    F. Reinders, F. H. Post, and H. J. W. Spoelder.  Visualization of Time-Dependent Data with Feature Tracking and Event Detection,. In The Visual Computer, volume 17(1), pages 55-71. 2001.zbMATHCrossRefGoogle Scholar
  49. 49.
    F. Reinders, I. A. Sadarjoen, B. Vrolijk, and F. H. Post. Vortex Tracking and Visualisation in a Flow Past a Tapered Cylinder. In Computer Graphics Forum, volume 21(4), pages 675-682. November 2002.CrossRefGoogle Scholar
  50. 50.
    M. Roth and R. Peikert. Flow Visualization for Turbomachinery Design. In Proceedings IEEE Visualization ’96, pages 381-384, October 1996.Google Scholar
  51. 51.
    M. Roth and R. Peikert. A Higher-Order Method For Finding Vortex Core Lines. In Proceedings IEEE Visualization ’98, pages 143-150, 1998.Google Scholar
  52. 52.
    Y. Rubner, C. Tomasi, and L. J. Guibas.  A Metric for Distributions with Applications to Image Databases. 1998.Google Scholar
  53. 53.
    I. A. Sadarjoen and F. H. Post.  Detection, Quantification, and Tracking of Vortices using Streamline Geometry. Computers and Graphics, 24(3):333-341, June 2000.CrossRefGoogle Scholar
  54. 54.
    J. Sahner, T. Weinkauf, and H. C. Hege. Galilean Invariant Extraction and Iconic Representation of Vortex Core Lines. In Proceedings of the Joint Eurographics - IEEE VGTC Symposium on Visualization (EuroVis 05), 2005.Google Scholar
  55. 55.
    G. Scheuermann, H. Hagen, H. Krüger, M. Menzel, and A. Rockwood. Visualization of Higher Order Singularities in Vector Fields. In Proceedings IEEE Visualization ’97, pages 67-74, October 1997.Google Scholar
  56. 56.
    G. Scheuermann, H. Krüger, M. Menzel, and A. P. Rockwood. Visualizing Nonlinear Vector Field Topology. IEEE Transactions on Visualization and Computer Graphics, 4(2):109-116, April/June 1998.CrossRefGoogle Scholar
  57. 57.
    G. Scheuermann and X. Tricoche. Topological Methods in Flow Visualization. In C.D. Hansen and C.R. Johnson, editors, The Visualization Handbook, pages 341-358. Elsevier, 2005.Google Scholar
  58. 58.
    S. Stegmaier and T. Ertl. A Graphics Hardware-based Vortex Detection and Visualization System. In Proceedings IEEE Visualization 2004, pages 195-202, 2004.Google Scholar
  59. 59.
    D. Sujudi and R. Haimes. Identification of Swirling Flow in 3D Vector Fields. Technical Report AIAA Paper 95-1715, American Institute of Aeronautics and Astronautics, 1995.Google Scholar
  60. 60.
    L. Sun, R Batra, X. Shi, and L. Hesselink. Topology Visualization of the Optical Power Flow through a Novel C-Shaped Nano-Aperture. In Proceedings IEEE Visualization 2004, pages 337-344, 2004.Google Scholar
  61. 61.
    A. Szymczak and J. Vanderhyde. Extraction of Topologically Simple Isosurfaces from Volume Datasets. In Proceedings IEEE Visualization 2003, pages 67-74, 2003.Google Scholar
  62. 62.
    C. K. Tang and G. G. Medioni. Extremal Feature Extraction From 3D Vector and Noisy Scalar Fields. In Proceedings IEEE Visualization ’98, pages 95-102. IEEE, 1998.Google Scholar
  63. 63.
    A. Telea and J.J. van Wijk. Simplified Representation of Vector Fields. In Proceedings IEEE Visualization ’99, pages 35-42, 1999.Google Scholar
  64. 64.
    H. Theisel. Designing 2D Vector Fields of Arbitrary Topology. Computer Graphics Forum (Eurographics 2002), 21(3):595-595, 2002.CrossRefGoogle Scholar
  65. 65.
    H. Theisel, C. Rössl, and H. Seidel. Using Feature Flow Fields for Topologi- cal Comparison of Vector Fields. In Proceedings of the Conference on Vision, Modeling and Visualization 2003 (VMV-03), pages 521-528, November 19-21 2003.Google Scholar
  66. 66.
    H. Theisel, Ch. Rössl, and H.-P. Seidel. Combining Topological Simplification and Topology Preserving Compression for 2D Vector Fields. In Pacific Graphics, pages 419-423, 2003.Google Scholar
  67. 67.
    H. Theisel, Ch. Rössl, and H.-P. Seidel. Compression of 2D Vector Fields Under Guaranteed Topology Preservation. In Eurographics (EG 03), volume 22(3) of Computer Graphics forum, pages 333-342, September 1-6 2003.Google Scholar
  68. 68.
    H. Theisel and H.-P. Seidel. Feature Flow Fields. In Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization (VisSym 03), pages 141-148, 2003.Google Scholar
  69. 69.
    H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Extraction of Parallel Vector Surfaces in 3D Time-Dependent Fields and Application to Vortex Core Line Tracking.  In Proceedings IEEE Visualization 2005, pages 631-638, 2005.Google Scholar
  70. 70.
    H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Saddle Connectors-An Approach to Visualizing the Topological Skeleton of Complex 3D Vector Fields. In Proceedings IEEE Visualization 2003, pages 225-232, 2003.Google Scholar
  71. 71.
    H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Stream Line and Path Line Oriented Topology for 2D Time-Dependent Vector Fields. In Proceedings IEEE Visualization 2004, pages 321-328, 2004.Google Scholar
  72. 72.
    H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Topological Methods for 2D Time-Dependent Vector Fields Based On Stream Lines and Path Lines. IEEE Transactions on Visualization and Computer Graphics, 11(4), 2005.Google Scholar
  73. 73.
    H. Theisel, T. Weinkauf, H.-P. Seidel, and H. Seidel. Grid-Independent Detection of Closed Stream Lines in 2D Vector Fields. In Proceedings of the Conference on Vision, Modeling and Visualization 2004 (VMV 04), pages 421-428, November 2004.Google Scholar
  74. 74.
    X. Tricoche, C. Garth, G. Kindlmann, E. Deines, G. Scheuermann, and H. Hagen.  Visualization of Intricate Flow Structures for Vortex Breakdown Analysis. In Proceedings IEEE Visualization 2004, pages 187-194, 2004.Google Scholar
  75. 75.
    X. Tricoche, C. Garth, and G. Scheuermann. Fast and Robust Extraction of Separation Line Features. In Proceedings of Seminar on Scientific Visualization 2003, Schloss Dagstuhl, 2003.Google Scholar
  76. 76.
    X. Tricoche and G. Scheuermann. Continuous Topology Simplification of Planar Vector Fields. In Proceedings IEEE Visualization 2001, pages 159-166, 2001.Google Scholar
  77. 77.
    X. Tricoche, G. Scheuermann, and H. Hagen. A Topology Simplification Method For 2D Vector Fields. In Proceedings IEEE Visualization 2000, 2000.Google Scholar
  78. 78.
    X. Tricoche, G. Scheuermann, and H. Hagen. Scaling the Topology of Symmetric, Second-Order Planar Tensor Fields. In Proceedings of NSF/DOE Lake Tahoe Workshop on Hierarchical Approximation and Geometrical Methods for Scientific Visualization, 2001.Google Scholar
  79. 79.
    X. Tricoche, G. Scheuermann, and H. HagenTensor Topology Tracking: A Visualization Method for Time-Dependent 2D Symmetric Tensor Fields.  In Computer Graphics Forum 20(3) (Eurographics 2001), pages 461-470, September 2001.CrossRefGoogle Scholar
  80. 80.
    X. Tricoche, G. Scheuermann, and H. Hagen. Topology-Based Visualization of Time-Dependent 2D Vector Fields. In Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization (VisSym-01), pages 117-126, May 28-30 2001.Google Scholar
  81. 81.
    X. Tricoche, G. Scheuermann, and H. Hagen. Topology Simplification of Symmetric, Second-Order 2D Tensor Fields, Hierarchical and Geometrical Methods in Scientific Visualization. 2003.Google Scholar
  82. 82.
    X. Tricoche, G. Scheuermann, H. Hagen, and S. Clauss. Vector and Tensor Field Topology Simplification on Irregular Grids. In Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization (VisSym-01), pages 107-116. Springer-Verlag, May 28-30 2001.Google Scholar
  83. 83.
    X. Tricoche, T. Wischgoll, G. Scheuermann, and H. Hagen. Topology Tracking for the Visualization of Time-Dependent Two-Dimensional Flows. Computers & Graphics, 26(2):249-257, 2002.CrossRefGoogle Scholar
  84. 84.
    T. Weinkauf, H. Theisel, H. C. Hege, and H.-P. Seidel. Boundary Switch Connectors for Topological Visualization of Complex 3D Vector Fields. In Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization (VisSym 04), pages 183-192, 2004.Google Scholar
  85. 85.
    T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Topological Construction and Visualization of Higher Order 3D Vector Fields. Computer Graphics Forum, 23(3):469-478, 2004.CrossRefGoogle Scholar
  86. 86.
    T. Weinkauf, H. Theisel, H. C. Hege, and H.-P. Seidel. Extracting Higher Order Critical Points and Topological Simplification of 3D Vector Fields. In Proceedings IEEE Visualization 2005, pages 559-566, 2005.Google Scholar
  87. 87.
    T. Wischgoll and G. Scheuermann.  Detection and Visualization of Closed Streamlines in Planar Fields. IEEE Transactions on Visualization and Computer Graphics, 7(2), 2001.Google Scholar
  88. 88.
    T. Wischgoll and G. Scheuermann. Locating Closed Streamlines in 3D Vector Fields. In Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization (VisSym 02), pages 227-280, May 2002.Google Scholar
  89. 89.
    T. Wischgoll, G. Scheuermann, and H. Hagen. Tracking Closed Streamlines in Time Dependent Planar Flows. In Proceedings of the Vision Modeling and Visualization Conference 2001 (VMV 01), pages 447-454, November 21-23 2001.Google Scholar
  90. 90.
    X. Zheng and A. Pang. Topological Lines in 3D Tensor Fields. In Proceedings IEEE Visualization ’04, pages 313-320, 2004.Google Scholar
  91. 91.
    X. Zheng and A. Pang. 2D Asymmetric Tensor Fields. In Proceedings IEEE Visualization 2005, pages 3-10, 2005.Google Scholar
  92. 92.
    X. Zheng, B. Parlett, and A. Pang. Topological Lines in 3D Tensor Fields and Discriminant Hessian Factorization. IEEE Transactions on Visualization and Computer Graphics, 11(4):395-407, July 2005.CrossRefGoogle Scholar
  93. 93.
    X. Zheng, B. Parlett, and A. Pang. Topological Structures of 3D Tensor Fields. In Proceedings IEEE Visualization 2005, pages 551-558, 2005.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Robert S. Laramee
    • 1
  • Helwig Hauser
    • 2
  • Lingxiao Zhao
  • Frits H. Post
  1. 1.Department of Computer ScienceSwansea UniversityUK
  2. 2.VRVis Research CenterViennaAustria

Personalised recommendations