Frontiers in Computational Geophysics: Simulations of Mantle Circulation, Plate Tectonics and Seismic Wave Propagation

  • J. Oeser
  • H. -P. Bunge
  • M. Mohr
  • H. Igel
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 100)


Recent progress in geophysical modelling of global plate tectonic, mantle convection and seismic wave propagation problems is reviewed, while paying particular attention to novel adjoint methods for the efficient inversion of seismic and tectonic data. Observed is that the continuing growth in high performance and cluster computing promises the crossing of long standing barriers in the simulation of first-order geophysical phenomena.


Rayleigh Number Plate Motion Mantle Convection Adjoint Method Spectral Element Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benzi, M., Golub, G., Liessen, J.: Numerical solution of saddle point problems. Acta Numerica 14, 1–137 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bercovici, D.: A source-sink model of the generation of plate tectonics from non-newtonian mantle flow. J. Geophys. Res. 100, 2013–2030 (1995)CrossRefGoogle Scholar
  3. 3.
    Bird, P.: Testing hypotheses on plate-driving mechanisms with global lithosphere models including topography, thermal structure, and faults. J. Geophys. Res. 103, 10115–10129 (1998)CrossRefGoogle Scholar
  4. 4.
    Bunge, H.-P., Grand, S.P.: Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab. Nature 405, 337–340 (2000)CrossRefGoogle Scholar
  5. 5.
    Bunge, H.-P., Hagelberg, C.R., Travis, B.J.: Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophys. J. Int. 152(2), 280–301 (2003)CrossRefGoogle Scholar
  6. 6.
    Bunge, H.-P., Richards, M.A., Baumgardner, J.R.: The effect of depth dependent viscosity on the planform of mantle convection. Nature 379, 436–438 (1996)CrossRefGoogle Scholar
  7. 7.
    Bunge, H.-P., Richards, M.A., Baumgardner, J.R.: A sensitivity study of 3-D spherical mantle convection at 108 Rayleigh number: Effects of depth dependent viscosity, heating mode and an endothermic phase change. J. Geophys. Res. 102, 11991–12007 (1997)CrossRefGoogle Scholar
  8. 8.
    Bunge, H.-P., Richards, M.A., Lithgow-Bertelloni, C., Baumgardner, J.R., Grand, S., Romanowicz, B.: Time scales and heterogeneous structure in geodynamic earth models. Science 280, 91–95 (1998)CrossRefGoogle Scholar
  9. 9.
    Davies, G.F.: Mantle convection model with a dynamic plate-topography, heat-flow and gravity anomalies. Geophys. J. Int. 98, 461–464 (1989)CrossRefGoogle Scholar
  10. 10.
    Davies, G.F.: Dynamic earth: plates, plumes, and mantle convection. Cambridge Atmospheric and Space Science Series. Cambridge University Press, Cambridge (1999)Google Scholar
  11. 11.
    Dixon, T.H.: An introduction to the Global Positioning System and some geological applications. Reviews of Geophysics 29, 249–276 (1991)CrossRefGoogle Scholar
  12. 12.
    Fichtner, A., Bunge, H.-P., Igel, H.: The adjoint method in seismology: I - Theory. Physics of The Earth and Planetary Interiors 157(1-2), 86–104 (2006)CrossRefGoogle Scholar
  13. 13.
    Fichtner, A., Bunge, P., Igel, H.: The adjoint method in seismology: II - Applications: traveltimes and sensitivity functionals. Phys. Earth Planet. Int. 157(1-2), 105–123 (2006)CrossRefGoogle Scholar
  14. 14.
    Gable, C.W., OConnell, R.J., Travis, B.J.: Convection in 3 dimensions with surface plates generation of toroidal flow. J. Geophys. Res. 96, 8391–8405 (1991)CrossRefGoogle Scholar
  15. 15.
    Glatzmaier, G.A.: Geodynamo simulations - how realistic are they? Annual Review of Earth and Planetary Sciences 30, 237–257 (2002)CrossRefGoogle Scholar
  16. 16.
    Heidbach, O., Iaffaldano, G., Bunge, H.-P.: Topography growth drives stress rotations in the central Andes: 3 Observations and models. Geophysical Research Letters 35 (in press, 2008)Google Scholar
  17. 17.
    Heidbach, O., Reinecker, J., Tingay, M., Müller, B., Sperner, B., Fuchs, K., Wenzel, F.: Plate boundary forces are not enough: Second- and third-order stress patterns highlighted in the world stress map database. Tectonics 26 (2007)Google Scholar
  18. 18.
    Hollerbach, R.: On the theory of the geodynamo. Physics of the Earth and Planetary Interiors 98, 163–185 (1996)CrossRefGoogle Scholar
  19. 19.
    Iaffaldano, G., Bunge, H.-P., Buecker, M.: Mountain belt growth inferred from histories of past plate convergence: A new tectonic inverse problem. Earth Planet. Sci. Lett. 260, 516–523 (2007)CrossRefGoogle Scholar
  20. 20.
    Iaffaldano, G., Bunge, H.-P., Dixon, T.H.: Feedback between mountain belt growth and plate convergence. Geology 34, 893–896 (2006)CrossRefGoogle Scholar
  21. 21.
    Igel, H., et al.: 3D Seismic Wave Propagation on a Global and Regional Scale: Earthquakes, Fault Zones, Volcanoes. In: High Performance Computing in Science and Engineering. Springer, Heidelberg (2002) ISBN 3-540-00474-2Google Scholar
  22. 22.
    Igel, H., Weber, M.: SH-wave propagation in the whole mantle using high-order finite differences. Geophys. Res. Lett. 22(6), 731–734 (1995)CrossRefGoogle Scholar
  23. 23.
    Ismail-Zadeh, A., Schubert, G., Tsepelev, I., Korotkii, A.: Inverse problem of thermal convection: numerical approach and application to mantle plume restoration. Physics of the Earth and Planetary Interiors 145, 99–114 (2004)CrossRefGoogle Scholar
  24. 24.
    Kirby, S.H.: Rheology of the lithosphere. Rev. Geophys. 21, 1458–1487 (1983)CrossRefGoogle Scholar
  25. 25.
    Komatitsch, D., Barnes, C., Tromp, J.: Simulation of anisotropic wave propagation based upon a spectral element method. Geophysics 65, 1251–1260 (2000)CrossRefGoogle Scholar
  26. 26.
    Kong, X., Bird, P.: Shells: A thin-shell program for modeling neotectonics of regional or global lithosphere with faults. J. Geophys. Res. 100, 22129–22132 (1995)CrossRefGoogle Scholar
  27. 27.
    McNamara, A.K., Zhong, S.: Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437(7062), 1136 (2005)CrossRefGoogle Scholar
  28. 28.
    Moresi, L., Solomatov, V.: Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the earth and venus. Geophys. J. Int. 133, 669–682 (1998)CrossRefGoogle Scholar
  29. 29.
    Oeser, J., Bunge, H.-P., Mohr, M.: Cluster Design in the Earth Sciences: TETHYS. In: Gerndt, M., Kranzlmüller, D. (eds.) HPCC 2006. LNCS, vol. 4208, pp. 31–40. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Ricard, Y., Vigny, C.: Mantle dynamics with induced plate tectonics. J. Geophys. Res. 94, 17543–17559 (1989)CrossRefGoogle Scholar
  31. 31.
    Richards, M.A., Yang, W.S., Baumgardner, J.R., Bunge, H.P.: Role of a low-viscosity zone in stabilizing plate tectonics: Implications for comparative terrestrial planetology. Geochem. Geophys. Geosys. 2 (2001)Google Scholar
  32. 32.
    Richardson, R.M., Coblentz, D.D.: Stress modeling in the andes: Constraints on the south america intraplate stress magnitudes. J. Geophys. Res. 99, 22015–22025 (1994)CrossRefGoogle Scholar
  33. 33.
    Sigloch, K., McQuarrie, N., Nolet, G.: Two-stage subduction history under north america inferred from finite-frequency tomography. Nature Geoscience (2008) (in review)Google Scholar
  34. 34.
    Song, T.R.A., Simons, M.: Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science 301, 630–633 (2003)CrossRefGoogle Scholar
  35. 35.
    Stemmer, K., Harder, H., Hansen, U.: A new method to simulate convection with strongly temperature- and pressure-dependent viscosity in a spherical shell: Applications to the earth’s mantle. Physics of the Earth and Planetary Interiors 157, 223–249 (2006)CrossRefGoogle Scholar
  36. 36.
    Tackley, P.J.: Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations, part 1: Pseudoplastic yielding. Geochem. Geophys. Geosys. 1 (2000)Google Scholar
  37. 37.
    Tackley, P.J., Stevenson, D.J., Glatzmaier, G.A., Schubert, G.: Effects of an endothermic phase transition at 670 km depth on a spherical model of convection in Earth’s mantle. Nature 361, 699–704 (1993)CrossRefGoogle Scholar
  38. 38.
    Tarantola, A.: 3-dimensional inversion without blocks. Geophysical Journal of the Royal Astronomical Society 76, 299–306 (1984)zbMATHGoogle Scholar
  39. 39.
    Tarantola, A.: Theoretical background for the inversion of seismic waveforms, including elasticity and attenuation. Pure and Applied Geophysics 128, 365–399 (1988)CrossRefGoogle Scholar
  40. 40.
    Tromp, J., Tape, C., Liu, Q.Y.: Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International 160, 195–216 (2005)CrossRefGoogle Scholar
  41. 41.
    Zhong, S., Zuber, M.T., Moresi, L., Gurnis, M.: Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. Journal of Geophysical Research 105, 11063–11082 (2000)CrossRefGoogle Scholar
  42. 42.
    Zhong, S.J., Gurnis, M.: Mantle convection with plates and mobile, faulted plate margins. Science 267, 838–843 (1995)CrossRefGoogle Scholar
  43. 43.
    Zhong, S.J., Gurnis, M., Moresi, L.: The role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models. J. Geophys. Res. 103, 15255–15268 (1998)CrossRefGoogle Scholar
  44. 44.
    Zoback, M.L.: First and second order patterns of stress in the lithosphere: The world stress map project. J. Geophys. Res. 97, 11703–11728 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. Oeser
    • 1
  • H. -P. Bunge
    • 1
  • M. Mohr
    • 1
  • H. Igel
    • 1
  1. 1.Department of Earth and Environmental Sciences, GeophysicsLudwigs-Maximilians-UniversitätMünchenGermany

Personalised recommendations