Numerical Modelling of Technical Combustion

  • H. Bockhorn
  • P. Habisreuther
  • M. Hettel
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 100)


This contribution gives a short overview over modern numerical combustion modelling. Numerical simulation of combustion is a multi-scale problem, because the specific issues of fluid mechanics and chemical reaction systems accumulate. There exist a large variety of combustion models for different flame types, which are more or less universal. For some turbulent reacting flows, existing methodologies are acceptably accurate, and have justifiable computational cost. Depending on the expected answers of numerical simulation, substantial advances are required and have to be worked out.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boger, M., Veynante, D., Boughanem, H., Trouve, A.: Direct nu-merical simulation analysis of flame surface density concept for large eddy simulations of turbulent premixed combustion. Proc. Combust. Inst. 27, 917–925 (1998)Google Scholar
  2. Borghi, R.: On the Structure and Morphology of Turbulent Premixed Flames. Recent Advantages in Aerospace Science, 117–138 (1985)Google Scholar
  3. Borghi, R.: Turbulent Combustion Modelling. Progress in Energy and Combustion Science 14, 245–292 (1988)CrossRefGoogle Scholar
  4. Borghi, R., Argueyrolles, B., Gauffie, G., Souhaite, P.: Application of a Presumed P.D.F. Model of Turbulent Combustion to Reciprocating Engines. Proc. Combust. Inst. 21, 1591–1599 (1986)Google Scholar
  5. Branley, N., Jones, W.P.: Large eddy simulation of a nonpre-mixed turbulent swirling flame. In: Rodi, W., Laurence, D. (eds.) Engineering Turbulence Modelling and Experiments, vol. 4, pp. 861–870. Elsevier Science Ltd., Amsterdam (1999)CrossRefGoogle Scholar
  6. Bray, K.N.C.: Methods on including realistic chemical reac-tion mechanisms in turbulent combustion model. In: Warnatz, J., Jäger, W. (eds.) Complex Chemical Reactions. Springer, Heidelberg (1987)Google Scholar
  7. Bray, K.N.C., Cant, R.S.: Some Applications of Kolmogorov‘s Turbulence Research in the Field of Combustion. In: Proceedings of the Royal Society of London, vol. 434, pp. 217–240 (1991); First published in Russion Dokl. Akad. NauSSSR, vol. 30(4). Translation by V. LevinGoogle Scholar
  8. Bray, K.N.C., Libby, P.: Passage times and Flamelet Crossing Frequencies in Premixed Turbulent Combustion. Combustion Science and Technology 47, 253–274 (1986)CrossRefGoogle Scholar
  9. Bray, K.N.C., Moss, J.B.: A unified statistical model of the premixed turbulent flame. Acta Astronautica 4, 291–319 (1977)CrossRefGoogle Scholar
  10. Cant, R.S., Pope, S.B., Bray, K.N.C.: Modelling of Flamelet Surface-To-Volume Ratio in Turbulent Premixed Combustion. Proc. Combust. Inst. 23, 809–815 (1990)Google Scholar
  11. Dopazo, C.: Recent Developments of Pdf Methods. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, pp. 375–474. Academic Press, London (1994)Google Scholar
  12. Driscoll, J.F.: Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Progress in Energy and Combustion Science 34, 91–134 (2008)CrossRefGoogle Scholar
  13. El-Asrag, H., Menon, S.: Large eddy simulation of a bluff body stabilized swirling nonpremixed flame. Proc. Combust. Inst., 31 (2007)Google Scholar
  14. Elliott, L., Ingham, D.B., Kyne, A.G., Mera, N.S., Pourkashanian, M., Wilson, C.W.: Genetic algorithms for optimisation of chemical kinetics reaction mechanisms. Progress in Energy and Combustion Science 30, 297–328 (2004)CrossRefGoogle Scholar
  15. Fox, R.O.: Computational methods for turbulent reacting flows. Cambridge University Press, Cambridge (2003)Google Scholar
  16. Gouldin, F.C., Bray, K.N.C., Chen Chen, J.Y.: Chemical Clo-sure Model for Fractal Flamelets. Combustion and Flame 77, 241–259 (1989)CrossRefGoogle Scholar
  17. Hinze, J.O.: Turbulence. McGraw-Hill, New York (1959)Google Scholar
  18. Im, H.G., Lund, T.S., Ferziger, J.H.: Large eddy simulation of turbulent front flame propagation with dynamic subgrid models. Phy. Fluids A9, 3826–3833 (1997)CrossRefMathSciNetMATHGoogle Scholar
  19. Kerstein, A.R.: Linear-eddy modeling of turbulent transport. Part IV. Structure of diffusion- flames. Combust. Sci. Tech. 81, 75–86 (1992)CrossRefGoogle Scholar
  20. Kim, S., Pitsch, H.: Conditional filtering method for large eddy simulation of turbulent nonpremixed combustion. Physics of Fluids 17, 105103-105103-12 (2005)CrossRefGoogle Scholar
  21. Yu, K.A., Bilger, R.W.: Conditional Moment Closure for turbulent combustion. Progress in Energy Combustion Science 25, 595–687 (1999)CrossRefGoogle Scholar
  22. Lam, S.H.: Singular Perturbation for Stiff Equations Using Numerical Methods. In: Casci, C. (ed.) Recent Advances in the Aerospace Sciences, pp. 3–20. Plenum Press, New York (1985)Google Scholar
  23. Lesieur, M., Metais, O.: New trends in Large-Eddy simulations of turbulence. Annu. Rev. Fluid. Mech. 28, 45–82 (1996)CrossRefMathSciNetGoogle Scholar
  24. Libby, P.A., Williams, F.A. (eds.): Turbulent reacting flows. Academic Press, London (1994)MATHGoogle Scholar
  25. Lipatnikov, A.N., Chomiak, J.: Turbulent Flame Speed and Thickness: Phenomenology, Evaluation, and Application in Multi-Dimensional Simulations. Progress in Energy and Combustion Science 18, 1–74 (2001)Google Scholar
  26. Maas, U., Pope, S.B.: Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Combustion Space. Combustion and Flame 88, 239–264 (1992)CrossRefGoogle Scholar
  27. Mantel, T., Borghi, R.: A New Model of Premixed Wrinkled Flame Propagation Based on Scalar Dissipation Equation. Combustion and Flame 96, 443–457 (1994)CrossRefGoogle Scholar
  28. Moin, M.: Progress in Large-Eddy simulations of turbulent flows, AIAA paper 97-0749 (1997)Google Scholar
  29. Moin, P., Mahesh, K.: Direct numerical simulation: a tool for turbulence research. Annu. Rev. Fluid Mech. 30, 539–578 (1998)CrossRefMathSciNetGoogle Scholar
  30. Oran, E.S., Boris, J.P.: Numerical Simulation of Reactive Flow. Elsevier, Amsterdam (1987)MATHGoogle Scholar
  31. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Series in Computational Methods in Mechanics and Thermal Science. McGraw-Hill, New York (1990)Google Scholar
  32. Peters, N.: Laminar Flamelets Concepts in Turbulent Combustion. Proc. Combust. Inst. 21, 1231–1250 (1986)Google Scholar
  33. Peters, N.: Premixed, non-premixed and partially premixed turbulent combustion with fast chemistry. In: Proceedings of the Anglo-German Combustion Symposium, pp. 26–33. The British Section of the Combustion Institute (1993)Google Scholar
  34. Peters, N.: The Turbulent Burning Velocity for Large Scale and Small-Scale Turbulence. Journal of Fluid Mechanics 384, 107–132 (1999)CrossRefMATHGoogle Scholar
  35. Peters, N.: Turbulent Combustion. Cambridge University Press, London (2000)MATHGoogle Scholar
  36. Pierce, C.D., Moin, P.: Large Eddy Simulation of a confined coaxial jet with swirl and heat release, AIAA paper 98-2892, 1-11 (1998)Google Scholar
  37. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. R. T. Edwards, Inc., Philadelphia (2001)Google Scholar
  38. Poinsot, T.: Using direct numerial simulation to understand turbulent combustion. Proc. Combust. Inst. 26, 219–232 (1996)Google Scholar
  39. Pope, S.B.: A Monte Carlo Method for the Pdf Equations of Turbulent Reacting Flows. Combustion Science and Technology 17, 299–314 (1981)Google Scholar
  40. Pope, S.B.: Turbulent Flows. Cambridge University Press, London (2000)MATHGoogle Scholar
  41. Smagorinsky, J.: General circulation experiments with the primitive equations, I, The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)CrossRefGoogle Scholar
  42. TCP-EBI, Results from Calculations performed at the Uni-versity of Karlsruhe. Institute for Technical Chemistry and Polymer Chemis-try (TCP) and Engler-Bunte-Institute, Division of Combustion Technology (EBI). Fig. 6: D. Großschmidt (EBI), Fig. 7: M. Hettel (EBI), Fig. 8: J. Fröhlich (TCP), Fig. 9: P. Habisreuther (EBI), Fig. 10: M. Lecanu (TCP), Fig. 11: J. Denev (TCP) (2007)Google Scholar
  43. Turns, S.R.: An introduction to combustion: concepts and applications. McGraw-Hill, Boston (2000)Google Scholar
  44. Weller, H.G., Marooney, C.J., Gosman, A.D.: A New Spectral Method for Calculation of the Time-Varying Area of a Laminar Flame in Homogeneous Turbulence. Proc. Combust. Inst. 23 (1990)Google Scholar
  45. Wilcox, C.C.: Turbulence Modeling for CFD. DCW Industries (1998)Google Scholar
  46. Williams, F.A.: Combustion Theory. Addison-Wesley Publishing Company, Reading (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • H. Bockhorn
    • 1
    • 2
  • P. Habisreuther
    • 2
  • M. Hettel
    • 1
  1. 1.Institut für Technische Chemie undUniversität Karlsruhe 
  2. 2.Engler-Bunte-Institut, Bereich VerbrennungstechnikUniversität KarlsruheKarlsruheGermany

Personalised recommendations