Integrating Local and Personalised Modelling with Global Ontology Knowledge Bases for Biomedical and Bioinformatics Decision Support

  • Nikola Kasabov
  • Qun Song
  • Lubica Benuskova
  • Paulo Gottgtroy
  • Vishal Jain
  • Anju Verma
  • Ilkka Havukkala
  • Elaine Rush
  • Russel Pears
  • Alex Tjahjana
  • Yingjie Hu
  • Stephen MacDonell

Summary

A novel ontology based decision support framework and a development platform are described, which allow for the creation of global knowledge representation for local and personalised modelling and decision support. The main modules are: an ontology module; and a machine learning module. Both modules evolve through continuous learning from new data. Results from the machine learning procedures can be entered back to the ontology thus enriching its knowledge base and facilitating new discoveries. This framework supports global, local and personalised modelling. The latter is a process of model creation for a single person, based on their personal data and the information available in the ontology. Several methods for local and personalised modelling, both traditional and new, are described. A case study is presented on brain-gene-disease ontology, where a set of 12 genes related to central nervous system cancer are revealed from existing data and local profiles of patients are derived. Through ontology analysis, these genes are found to be related to different functions, areas, and other diseases of the brain. Two other case studies discussed in the paper are chronic disease ontology and risk evaluation, and cancer gene ontology and prognosis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alizadeh, A.A., Eisen, M., Davis, R., Ma, C., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511 (2000)CrossRefGoogle Scholar
  2. Anon: The Nervous System. In: Genes and Disease, National Centre for Biotechnology Information (NCBI) (2005), http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=gnd.chapter.75
  3. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics 25, 25–29 (2000)Google Scholar
  4. Benuskova, L., Kasabov, N.: Computational Neurogenetic Modeling. Springer, New York (2007), http://www.springer.com/east/home/default?SGWID=5-40356-22-173696910-0 Google Scholar
  5. Benuskova, L., Jain, V., Wysoski, S.G., Kasabov, N.: Computational neurogenetic modeling: a pathway to new discoveries in genetic neuroscience. Intl. Journal of Neural Systems 16(3), 215–227 (2006)CrossRefGoogle Scholar
  6. Benuskova, L., Kasabov, N.: Modeling L-LTP based on changes in concentration of pCREB transcription factor. Neurocomputing 70(10-12), 2035–2040 (2007)CrossRefGoogle Scholar
  7. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May 17, 2001)Google Scholar
  8. Ceusters, W., Smith, B., Coldberg, L.: A Terminological and Ontological Analysis of the NCI Thesaurus. Methods Inf Med 44(4), 498–507 (2005)Google Scholar
  9. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: What are ontologies, and why do we need them? Intelligent Systems and Their Applications 14, 20–26 (1999)CrossRefGoogle Scholar
  10. Cho, H.S., Kim, T.S., Wee, J.W., Jeon, S.M., Lee, C.H.: cDNA Microarray Data Based Classification of Cancers Using Neural Networks and Genetic Algorithms. Nanotech 1, 28–31 (2003)Google Scholar
  11. Clark, P., Thompson, J., Porter, B.: Knowledge Patterns. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 191–208. Springer, Berlin (2004)Google Scholar
  12. Dameron, l., Roques, E., Rubin, D., Marquet, G., Burgun, A.: Grading lung tumors using OWL-DL based reasoning. In: The 9th International Protege Conference, Stanford, USA (paper presented at, 2006)Google Scholar
  13. Domshlak, C., Gal, A., Roitman, H.: Rank Aggregation for Automatic Schema Matching. IEEE Transactions on Knowledge and Data Engineering 19(4), 538–553 (2007)CrossRefGoogle Scholar
  14. Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce, 2 ed. Springer, Heidelberg (2004)Google Scholar
  15. Futschik, M., Reeve, A., Kasabov, N.: Evolving connectionist systems for knowledge discovery from gene expression data of cancer tissue. Artificial Intelligence in Medicine 28, 165–189 (2003)CrossRefGoogle Scholar
  16. Galperin, M.Y.: The Molecular Biology Database Collection. Nucl. Acids. Res. 33, D5–D24 (update 2005)Google Scholar
  17. Galperin, M.Y.: The Molecular Biology Database Collection. Nucl. Acids. Res. 34, D3–D5 (update 2006)Google Scholar
  18. Galperin, M.Y.: The Molecular Biology Database Collection. Nucl. Acids. Res. 35, D3–D4 (update 2007)Google Scholar
  19. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mersirov, J.P., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)CrossRefGoogle Scholar
  20. Gottgtroy, P., Kasabov, N., Macdonell, S.: Evolving Ontologies for Intelligent Decision Support. In: Fuzzy Logic And The Semantic Web, ch. 21, pp. 415–439. Elsevier, Amsterdam (2006)Google Scholar
  21. Greenman, C., Stephens, P., Smith, R., Dalgliesh, G., Hunter, C., Bignell, G., et al.: Patterns of somatic mutation in human cancer genomes. Nature 446(7132), 153–158 (2007)CrossRefGoogle Scholar
  22. Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisition 5, 199–220 (1993)CrossRefGoogle Scholar
  23. Havukkala, I., Benuskova, L., Pang, S., Jain, V., Kroon, R., Kasabov, N.: Image and Fractal Information Processing for Large-Scale Chemoinformatics, Genomics Analyses and Pattern Discovery. In: Rajapakse, J.C., Wong, L., Acharya, R. (eds.) PRIB 2006. LNCS (LNBI), vol. 4146, pp. 163–173. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. Hermida, L., Schaad, O., Demougin, P., Descombes, P., Primig, M.: MIMAS: an innovative tool for network-based high density oligonucleotide microarray data management and annotation. BMC Bioinformatics 7(190) (2006)Google Scholar
  25. Kasabov, N.: Adaptive learning system and method, Patent USA, PEBL, PCT WO 01/78003 (2001)Google Scholar
  26. Kasabov, N.: Evolving Connectionist Systems: Methods and Applications in Bioinformatics. In: Brain Study and Intelligent machines. Springer, London (2002)Google Scholar
  27. Kasabov, N.: Adaptation and Interaction in Dynamical Systems: Modelling and Rule Discovery Through Evolving Connectionist Systems. Applied Soft Computing 6(3), 307–322 (2006)CrossRefGoogle Scholar
  28. Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach, 2nd edn. Springer, London (2007a)MATHGoogle Scholar
  29. Kasabov, N.: Global, local and personalised modelling and profile discovery in Bioinformatics: An integrated approach. Pattern Recognition Letters 28(6), 673–685 (2007b)CrossRefGoogle Scholar
  30. Kasabov, N., Song, Q.: Transductive Neuro-Fuzzy Inference Method for Personalised Modelling, Patent, PCT WO 2005/048185 A1 (2005)Google Scholar
  31. Kasabov, N., Futschik, M., Sullivan, M., Reeve, A.: Method and Medical Decision Support System Utilizing Gene Expression and Clinical Information, Patent USA, PEBL, PCT/US03/25563 (2003)Google Scholar
  32. Kasabov, N., Reeve, A., Futschik, M., Sullivan, M., Guildford, P.: Medical Applications of Adaptive Learning Systems using Gene Expression Data, Patent USA, PEBL, PCT WO 03/079286 (2003)Google Scholar
  33. Lenzerini, M., Milano, D., Poggi, A.: State of the art and state of the practice including initial possible research orientations (InterOP Report). UniRoma, Roma, Italy (2004)Google Scholar
  34. Maamar, Z., Benslimane, D., Narendra, N.C.: What can context do for web services? Communications of the ACM 49(12), 98–103 (2006)CrossRefGoogle Scholar
  35. Maedche, A.: Ontology learning for the semantic Web. Kluwer Academic Publishers, Dordrecht (2002)MATHGoogle Scholar
  36. Marshall, M.R., Song, Q., Ma, T.M., MacDonell, S., Kasabov, N.: Evolving Connectionist System versus Algebraic Formulae for Prediction of Renal Function from Serum Creatinine. Kidney International 67, 1944–1954 (2005)CrossRefGoogle Scholar
  37. Nevins, J.R., Huang, E.S., Dressman, H., Pittman, J., Huang, A.T., West, M.: Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction. Human Molecular Genetics 12(2), R153-R157 (2003)Google Scholar
  38. Nicholson, J.K.: Global systems biology, personalized medicine and molecular epidemiology. Mol. Syst. Biol. 52(2) (2006)Google Scholar
  39. Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating Your First Ontology (Medical Informatics Technical Report No. SMI-2001-0880): Standford Knowledge Systems Laboratory (2001)Google Scholar
  40. Owens, A.: Semantic Storage: Overview and Assessment. Technical Report IRP Report 2005, Electronics and Computer Science, U of Southampton (2005)Google Scholar
  41. Pisanelli, D.M. (ed.): Ontologies in Medicine. IOS Press, Amsterdam (2004)Google Scholar
  42. Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., et al.: Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415(6870), 426 (2002)CrossRefGoogle Scholar
  43. Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Personal Communications 8(4), 10–17 (2001)CrossRefGoogle Scholar
  44. Schena, M.: Microarray analysis. John Wiley & Sons, New York (2002)Google Scholar
  45. Shegogue, D., Zheng, W.J.: Integration of the Gene Ontology into an object-oriented architecture. Bioinformatics 6(113), 1–14 (2005)Google Scholar
  46. Shippy, R., Fulmer-Smentek, S., Jensen, R.V., Jones, W.D., Wolber, P.K., Johnson, C.D., et al.: Using RNA sample titrations to assess microarray platform performance and normalization techniques. Nature Biotechnology 24, 1123–1131 (2006)CrossRefGoogle Scholar
  47. Song, Q., Kasabov, N.: NFI: a neuro-fuzzy inference method for transductive reasoning. Fuzzy Systems, IEEE Transactions on 13(6), 799–808 (2005)CrossRefGoogle Scholar
  48. Song, Q., Kasabov, N.: TNFI: A Neuro-Fuzzy Inference Method for Transductive Reasoning. IEEE Transactions on Fuzzy Systems 13(6), 799–808 (2005)CrossRefGoogle Scholar
  49. Song, Q., Kasabov, N.: TWNFI - a transductive neuro-fuzzy inference system with weighted data normalisation for personalised modelling. Neural Networks 19(10), 1591–1596 (2006)MATHCrossRefGoogle Scholar
  50. Song, Q., Ma, T.M., Kasabov, N.: Transductive Knowledge Based Fuzzy Inference System for Personalized Modeling. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), vol. 3614, pp. 528–535. Springer, Heidelberg (2005)Google Scholar
  51. Song, Q., Kasabov, N., Ma, T., Marshall, M.: Integrating regression formulas and kernel functions into locally adaptive knowledge-based neural networks: a case study on renal function evaluation. In: Artificial Intelligence in Medicine (February 2006)Google Scholar
  52. Uschold, M.F., Grüninger, M.: Ontologies: Principles, Methods and Applications. The Knowledge Engineering Review 11(2), 93–155 (1996)CrossRefGoogle Scholar
  53. Van de Vijies, M.J., et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530–536 (2002)CrossRefGoogle Scholar
  54. Verma, A., Song, Q., Kasabov, N.: Developing “Evolving Ontology” for Personalised Risk Evaluation for Type-2 Diabetes Patients. In: 6th International Conference on Hybrid Intelligence, Auckland, New Zealand (2006)Google Scholar
  55. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nikola Kasabov
    • 1
  • Qun Song
    • 1
  • Lubica Benuskova
    • 1
  • Paulo Gottgtroy
    • 1
  • Vishal Jain
    • 1
  • Anju Verma
    • 1
  • Ilkka Havukkala
    • 1
  • Elaine Rush
    • 1
  • Russel Pears
    • 1
  • Alex Tjahjana
    • 1
  • Yingjie Hu
    • 1
  • Stephen MacDonell
    • 1
  1. 1.Knowledge Engineering and Discovery Research Institute, KEDRIAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations