From Biomedical Literature to Knowledge: Mining Protein-Protein Interactions

  • Deyu Zhou
  • Yulan He
  • Chee Keong Kwoh
Part of the Studies in Computational Intelligence book series (SCI, volume 151)

Summary

To date, more than 16 million citations of published articles in biomedical domain are available in the MEDLINE database. These articles describe the new discoveries which accompany a tremendous development in biomedicine during the last decade. It is crucial for biomedical researchers to retrieve and mine some specific knowledge from the huge quantity of published articles with high efficiency. Researchers have been engaged in the development of text mining tools to find knowledge such as protein-protein interactions, which are most relevant and useful for specific analysis tasks. This chapter provides a road map to the various information extraction methods in biomedical domain, such as protein name recognition and discovery of protein-protein interactions. Disciplines involved in analyzing and processing unstructured-text are summarized. Current work in biomedical information extracting is categorized. Challenges in the field are also presented and possible solutions are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Xenarios, I., Salwinski, L., Duan, X., Higney, P., Kim, S., Eisenberg, D.: DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Research 30(1), 303–305 (2002)CrossRefGoogle Scholar
  3. 3.
    Bader, G., Betel, D., Hogue, C.: BIND: the Biomolecular Interaction Network Database. Nucleic Acids Research 31(1), 248–250 (2003)CrossRefGoogle Scholar
  4. 4.
    Hermjakob, H., Montecchi-Palazzi, L., Lewington, C.: IntAct: an open source molecular interaction database. Nucleic Acids Research 1(32(Database issue)), 452–455 (2004)CrossRefGoogle Scholar
  5. 5.
    von Mering, C., Jensen, L., Snel, B., Hooper, S., Krupp, M.: STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Research 33(Database issue), 433–437 (2005)CrossRefGoogle Scholar
  6. 6.
    Wong, L.: PIES, a protein interaction extraction system. In: Proc. Pacific Symposium on Biocomputing, Hawaii, U.S.A., pp. 520–531(2001)Google Scholar
  7. 7.
    Blaschke, C., Valencia, A.: The Frame-Based Module of the SUISEKI Information Extraction system. IEEE Intelligent Systems 17(2), 14–20 (2002)Google Scholar
  8. 8.
    Donaldson, I., Martin, J., de Bruijn, B., Wolting, C.: PreBIND and Textomymining the biomedical literature for protein-protein interactions using a support vector machine. BMC Bioinformatics 4(11) (2003)Google Scholar
  9. 9.
    Chiang, J.H., Yu, H.C., Hsu, H.J.: GIS: a biomedical text-mining system for gene information discovery. Bioinformatics 20(1), 120–121 (2004)CrossRefGoogle Scholar
  10. 10.
    Ahmed, S.T., Chidambaram, D., Davulcu, H., Baral, C.: IntEx: A Syntactic Role Driven Protein-Protein Interaction Extractor for Bio-Medical Text. In: Proc. ACL-ISMB Workshop on Linking Biological Literature, Ontologies and Database 2005, pp. 54–61 (2005)Google Scholar
  11. 11.
    Rindflesch, T., Tanabe, L., Weinstein, J., Hunter, L.: EDGAR: extraction of drugs, genes and relations from the biomedical literature. In: Proc. Pacific Symposium Biocomputing, pp. 517–528 (2000)Google Scholar
  12. 12.
    Corney, D.P.A., Buxton, B.F., Langdon, W.B., Jones, D.T.: BioRAT: extracting biological information from full-length papers. Bioinformatics 20(17), 3206–3213 (2004)CrossRefGoogle Scholar
  13. 13.
    Rzhetsky, A., Iossifov, I., Koike, T., Krauthammer, M., Kra, P., Morris, M., Yu, H., Duboué, P., Weng, W., Wilbur, W., Hatzivassiloglou, V., Friedman, C.: GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data. Journal of Biomedical Informatic 37(1), 43–53 (2004)CrossRefGoogle Scholar
  14. 14.
    Peri, S., Navarro, J.D., Amanchy, R.: Development of Human Protein Reference Database as an Initial Platform for Approaching Systems Biology in Humans. Genome Research 13, 2363–2371 (2003)CrossRefGoogle Scholar
  15. 15.
    Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., Ausiello, G., Helmer-Citterich, M., Cesareni, G.: MINT: a Molecular INTeraction database. FEBS letters 513(1), 135–140 (2002)CrossRefGoogle Scholar
  16. 16.
    Chen, H., Sharp, B.M.: Conten-trich biological network constructed by mining PubMed abstracts. BMC Bioinformatics 8(5), 147 (2004)CrossRefGoogle Scholar
  17. 17.
    Hoffmann, R., Valencia, A.: A gene network for navigating the literature. Nature Genetics 36, 664 (2004)CrossRefGoogle Scholar
  18. 18.
    Mathiak, B., Eckstein, S.: Five Steps to Text Mining in Biomedical Literature. In: Proc. Data Mining and Text Mining for Bioinformatics European Workshop (2004)Google Scholar
  19. 19.
    Ding, J., Berleant, D., Nettleton, D., Wurtele, E.: Mining MEDLINE: Abstracts, sentences or phrases. In: Proc. Pacific Symposium on Biocomputing, Hawaii, U.S.A., pp. 326–337 (2002)Google Scholar
  20. 20.
    Krauthammer, M., Nenadic, G.: Term identification in the biomedical literature. Journal of biomedical informatics 37(6), 512–526 (2004)CrossRefGoogle Scholar
  21. 21.
    Pearson, H.: Biology’s name game. Nature 411(6838), 631–632 (2001)CrossRefGoogle Scholar
  22. 22.
    Chen, L., Liu, H., Friedman, C.: Gene name ambiguity of eukaryotic nomenclatures. Bioinformatics 21(2), 248–256 (2005)CrossRefGoogle Scholar
  23. 23.
    Leser, U., Hakenberg, J.: What makes a gene name? Named entity recognition in the biomedical literature. Briefings in Bioinformatics 6(4), 257–269 (2005)CrossRefGoogle Scholar
  24. 24.
    Drabkin, H.J., Hollenbeck, C., Hill, D.P., Blake, J.A.: Ontological visualization of protein-protein interactions. BMC Bioinformatics 6(29) (2005)Google Scholar
  25. 25.
    van Rijsbergen, C.: Information Retrieval (1999), http://www.dcs.gla.ac.uk/Keith/Preface.html
  26. 26.
    Hersh, W.: Evaluation of biomedical text-mining systems: Lessons learned from information retrieval. Briefings in Bioinformatics 6(4), 344–356 (2005)CrossRefGoogle Scholar
  27. 27.
    Andrade, M., Bork, P.: Automated extraction of information in molecular biology. FEBS Lett. 476(1-2), 12–17 (2000)CrossRefGoogle Scholar
  28. 28.
    Hirschman, L., Park, J.C., Tsujii, J., Wong, L., Wu, C.H.: Accomplishments and challenges in literature data mining for biology. Bioinformatics 18(12), 1553–1561 (2002)CrossRefGoogle Scholar
  29. 29.
    Shatkay, H., Feldman, R.: Mining the biomedical literature in the genomic era: an overview. Journal of Computational Biology 10(6), 821–855 (2003)CrossRefGoogle Scholar
  30. 30.
    Jensen, L.J., Saric, J., Bork, P.: Literature mining for the biologist: from information retrieval to biological discovery. Nature Reviews Genetics 7, 119–129 (2006)CrossRefGoogle Scholar
  31. 31.
    Hersh, W.R.: Information Retrieval: A Health and Biomedical Perspective (2003)Google Scholar
  32. 32.
    Chang, J.T.: Using Machine Learning to Extract Drug and Gene Relationships from Text. Ph.D. Thesis, Stanford University (2003)Google Scholar
  33. 33.
    Marquez, L.: Machine learning and natural language processing. In: Tech. Rep. LSI-00-45-R, Departament de Llenguatges i Sistemes Informatics (LSI), Universitat Politecnica de Catalunya (UPC), Barcelona, Spain (2000)Google Scholar
  34. 34.
    Cohen, K.B., Hunter, L.: Natural language processing and systems biology. In: Dubitzky, W. (ed.) Computational Biology. Azuaje, Francisco, vol. 5 (2004)Google Scholar
  35. 35.
    Yandell, M., Majoros, W.: Genomics and natural language processing. Nature Reviews Genetics 3(8), 601–610 (2002)Google Scholar
  36. 36.
    Hunter, L., Cohen, K.B.: Biomedical Language Processing: What’s Beyond PubMed? Molecular Cell 21(5), 589–594 (2006)CrossRefGoogle Scholar
  37. 37.
    Cardie, C.: Empirical Methods in Information Extraction. AI. Magazine 18(4), 65–80 (1997)Google Scholar
  38. 38.
    Blaschke, C., Hoffmann, R., Oliveros, J., Valencia, A.: Extracting information automatically from biological literature. Comparative and Functional Genomics 2(5), 2, 310–313 (2001)CrossRefGoogle Scholar
  39. 39.
    Cunningham, H.: Information Extraction, Automatic, Encyclopedia of Language and Linguistics, 2nd edn. (2005)Google Scholar
  40. 40.
    Skusa, A., Rüegg, A., Köhler, J.: Extraction of biological interaction networks from scientific literature. Briefings in Bioinformatics 6(3), 263–276 (2005)CrossRefGoogle Scholar
  41. 41.
    Text mining in the life sciences. Tech. rep. (2004)Google Scholar
  42. 42.
    Bruijn, B.D., Martin, J.: Literature Mining in Molecular Biology. In: Proc. EFMI Workshop on Natural Language Processing in Biomedical Application, pp. 1–5 (2002)Google Scholar
  43. 43.
    Krallinger, M., Erhardt, R., Valencia, A.: Text-mining approaches in molecular biology and biomedicine. Drug Discovery Today 10(6), 439–445 (2005)CrossRefGoogle Scholar
  44. 44.
    Spasic, I., Ananiadou, S., McNaught, J., Kumar, A.: Text mining and ontologies in biomedicine: Making sense of raw text. Briefings in Bioinformatics 6(3), 239–251 (2005)CrossRefGoogle Scholar
  45. 45.
    Cohen, A.M., Hersh, W.R.: A survey of current work in biomedical text mining. Briefings in Bioinformatics 6(1), 57–71 (2005)CrossRefGoogle Scholar
  46. 46.
    Ananiadou, S., Mcnaught, J.: Text mining for biology and biomedicine (2006)Google Scholar
  47. 47.
    Shatkay, H., Craven, M.: Biomedical text mining. MIT Press, Cambridge (2007)Google Scholar
  48. 48.
    Egorov, S., Yuryev, A., Daraselia, N.: A simple and practical dictionary based approach for identification of proteins in medline abstracts. Journal of the American Medical Informatics Association 11, 174–178 (2004)CrossRefGoogle Scholar
  49. 49.
    Krauthammer, M., Rzhetsky, A., Morozov, P., Friedman, C.: Using blast for identifying gene and protein names in journal articles. Gene 259(1), 245–252 (2000)CrossRefGoogle Scholar
  50. 50.
    Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment search tool. Journal of molecular biology 215, 403–410 (1990)Google Scholar
  51. 51.
    Fukuda, K., Tsunoda, T., Tamura, A., Takagi, T.: Toward information extraction: Identifying protein names from biological papers. In: Proc. Pacific Symposium on Biocomputing, Hawaii, USA, pp. 707–718 (1998)Google Scholar
  52. 52.
    Franzen, K., Eriksson, G., Olsson, F., Asker, L., Liden, P., Coster, J.: Protein names and how to find them. International Journal of Medical Informatics 67(1), 49–61 (2002)CrossRefGoogle Scholar
  53. 53.
    Yu, H., Hatzivassiloglou, V., Rzhetsky, A., Wilburc, W.J.: Automatically identifying geneprotein terms in medline abstracts. Journal of Biomedical Informatics 35, 322–330 (2002)CrossRefGoogle Scholar
  54. 54.
    Nobata, C., Collier, N., Tsujii, J.: Automatic term identification and classification in biology texts. In: Proc. 5th Natural Language Processing Pacific Rim Symposium, Beijing, China (1999)Google Scholar
  55. 55.
    Wilbur, W.: Boosting naive Bayesian learning on a large subset of MEDLINE. In: Proc. AMIA Symposium, Beijing, China, pp. 918–922 (2000)Google Scholar
  56. 56.
    Mika, S., Rost, B.: Nlprot: extracting protein names and sequences from papers. Nucleic Acids Research 32, 634–637 (2004)CrossRefGoogle Scholar
  57. 57.
    Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M., Estreicher, A., Gasteiger, E., Martin, M., Michoud, K., ODonovan, C., Phan, I.: The Swiss-Prot protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research 31(1), 365–370 (2003)CrossRefGoogle Scholar
  58. 58.
    Chang, J., Schutze, H., Altman, R.: Gapscore: finding gene and protein names one word at a time. Bioinformatics 20(2), 216–225 (2004)CrossRefGoogle Scholar
  59. 59.
    Hakenberg, J., Bickel, S., Plake, C., Brefeld, U., Zahn, H., Faulstich, L., Leser, U., Scheffer, T.: Systematic feature evaluation for gene name recognition. BMC Bioinformatics 6, S9 (2005)CrossRefGoogle Scholar
  60. 60.
    Yeh, A., Morgan, A., Colosimo, M., Hirschman, L.: Biocreative task 1a: gene mention finding evaluation. BMC Bioinformatics 6, S2 (2005)CrossRefGoogle Scholar
  61. 61.
    Collier, N., Nobata, C., Tsujii, J.: Extracting the names of genes and gene products with a hidden Markov model. In: Proc. 18th Conference on Computational linguistics, Saarbrucken, Germany, pp. 201–207 (2000)Google Scholar
  62. 62.
    Zhou, G., Zhang, J., Su, J., Shen, D., Tan, C.: Recognizing names in biomedical texts: a machine learning approach. Bioinformatics 20(7), 1178–1190 (2004)CrossRefGoogle Scholar
  63. 63.
    Tanabe, L., Wilbur, W.: Tagging gene and protein names in biomedical text. Bioinformatics 18(8), 1124–1132 (2002)CrossRefGoogle Scholar
  64. 64.
    Seki, K., Mostafa, J.: A hybrid approach to protein name identification in biomedical texts. Information Processing and Management 41, 723–743 (2005)CrossRefGoogle Scholar
  65. 65.
    Yu, H., Hatzivassiloglou, V., Rzhetsky, A., Wilbur, W.J.: Automatically identifying gene/protein terms in MEDLINE abstracts. Biomedical Informatics 35(5/6), 322–330 (2002)CrossRefGoogle Scholar
  66. 66.
    Yamamoto, K., Kudo, T., Konagaya, A., Matsumoto, Y.: Protein name tagging for biomedical annotation in text. In: Proc. ACL 2003 Workshop on Natural Language Processing in Biomedicine, Sapporo, Japan, pp. 65–72 (2003)Google Scholar
  67. 67.
    Sekimizu, T., Park, H., Tsujii, J.: Identifying the interaction between genes and gene products based on frequently seen verbs in MEDLINE abstracts. In: Proc. Workshop on Genome Informatics, vol. 9, pp. 62–71 (1998)Google Scholar
  68. 68.
    Rindflesch, T., Hunter, L., Aronson, A.: Mining molecular binding terminology from biomedical text. In: Proc. AMIA Symposium, pp. 127–131 (1999)Google Scholar
  69. 69.
    Thomas, J., Milward, D., Ouzounis, C., Pulman, S.: Automatic extraction of protein interactions from scientific abstracts. In: Proc. Pacific Symposium on Biocomputing, Hawaii, U.S.A., pp. 541–552 (2000)Google Scholar
  70. 70.
    Pustejovsky, J., Castano, J., Zhang, J., Kotecki, M., Cochran, B.: Robust Relational Parsing Over Biomedical Literature: Extracting Inhibit Relations. In: Proc. Pacific Symposium on Biocomputing, Hawaii, U.S.A., pp. 362–373 (2002)Google Scholar
  71. 71.
    Leroy, G., Chen, H., Martinez, J.D.: A Shallow Parser Based on Closed-Class Words to Capture Relations in Biomedical Text. Journal of Biomedical Informatics 36(3), 145–158 (2003)CrossRefGoogle Scholar
  72. 72.
    Seymore, K., McCallum, A., Rosenfeld, R.: Learning Hidden Markov Model Structure for Information Extraction. In: Proc. AAAI 1999 Workshop on Machine Learning for Information Extraction (1999)Google Scholar
  73. 73.
    Ray, S., Craven, M.: Representing Sentence Structure in Hidden Markov Models for Information Extraction. In: Proc. 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 1273–1279 (2001)Google Scholar
  74. 74.
    Park, J., Kim, H., Kim, J.: Bidirectional incremental parsing for automatic pathway identification with combinatory categorical grammar. In: Proc. Pacific Symposium on Biocomputing, Hawaii, U.S.A., vol. 6, pp. 396–407 (2001)Google Scholar
  75. 75.
    Yakushiji, A., Tateisi, Y., Miyao, Y., Tsujii, J.: Event extraction from biomedical papers using a full parser. In: Proc. Pacific Symposium on Biocomputing, Hawaii, U.S.A., vol. 6, pp. 408–419 (2001)Google Scholar
  76. 76.
    Friedman, C., Pauline Kra, H.Y., Krauthammer, M., Rzhetsky, A.: GENIES: a natural-language processing system for the extraction of molecular pathways from journal articles. Bioinformatics 17, S74–S82 (2001)Google Scholar
  77. 77.
    Novichkova, S., Egorov, S., Daraselia, N.: MedScan, a natural language processing engine for MEDLINE abstracts. Bioinformatics 19(13), 1699–1706 (2003)CrossRefGoogle Scholar
  78. 78.
    Temkin, J.M., Gilder, M.R.: Extraction of protein interaction information from unstructured text using a context-free grammar. Bioinformatics 19(16), 2046–2053 (2003)CrossRefGoogle Scholar
  79. 79.
    Ding, J., Berleant, D., Xu, J., Fulmer, A.W.: Extracting Biochemical Interactions from MEDLINE Using a Link Grammar Parser. In: Proc. 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2003) (2003)Google Scholar
  80. 80.
    Daraselia, N., Yuryev, A., Egorov, S., Novichkova, S., Nikitin, A., Mazo, l.: Extracting human protein interactions from MEDLINE using a full-sentence parser. Bioinformatics 20(5), 604–611 (2004)CrossRefGoogle Scholar
  81. 81.
    Tan, S., Kwoh, C.K.: Cytokine Information System and Pathway Visualization. In: Proc. International Joint Conference of InCoB, AASBi and KSBI (BIOINFO 2005) (2005)Google Scholar
  82. 82.
    Skounakis, M., Craven, M., Ray, S.: Hierarchical Hidden Markov Models for Information Extraction. In: Proc. 18th International Joint Conference on Artificial Intelligence (2003)Google Scholar
  83. 83.
    Rinaldi, F., Schneider, G., Kaljurand, K., Dowdall, J.: Mining relations in the GENIA corpus. In: Proc. 2nd European Workshop on Data Mining and Text Mining for Bioinformatics (2004)Google Scholar
  84. 84.
    Ng, S.K., Wong, M.: Toward Routine Automatic Pathway Discovery from On-line Scientific Text Abstracts. In: Proc. 12th National Conference on Artificial Intelligence (1999)Google Scholar
  85. 85.
    Blaschke, C., Andrade, M.A., Ouzounis, C., Valencia, A.: Automatic Extraction of Biological Information from Scientific Text: Protein-Protein Interactions. In: Proc. 7th International Conference on Intelligent Systems for Molecular Biology, pp. 60–67. AAAI Press, Menlo Park (1999)Google Scholar
  86. 86.
    Blaschke, C.V.A.: The potential use of SUISEKI as a protein interaction discovery tool. In: Proc. Workshop on Genome Informatics, vol. 12, pp. 123–134 (2001)Google Scholar
  87. 87.
    Ono, T., Hishigaki, H., Tanigam, A., Takagi, T.: Automated extraction of information on protein-protein interactions from the biological literature. Bioinformatics 17(2), 155–161 (2001)CrossRefGoogle Scholar
  88. 88.
    Leroy, G., Chen, H.: Filling preposition-based templates to capture information from medical abstracts. In: Proc. Pacific Symposium Biocomputing, pp. 350–361 (2002)Google Scholar
  89. 89.
    Proux, D., Rechenmann, F., Julliard, L.: A Pragmatic Information Extraction Strategy for Gathering Data on Genetic Interactions. In: Proc. 8th International Conference on Intelligent Systems for Molecular Biology, pp. 279–285. AAAI Press, Menlo Park (2000)Google Scholar
  90. 90.
    Huang, M., Zhu, X., Hao, Y.: Discovering patterns to extract protein-protein interactions from full text. Bioinformatics 20(18), 3604–3612 (2004)CrossRefGoogle Scholar
  91. 91.
    Chun, H.W., Hwang, Y.S., Rim, H.C.: Unsupervised Event Extraction from Biomedical Literature using Co-occurrence Information and Basic Patterns. Lecture Notes in Artificial Intelligence, pp. 777–786 (2005)Google Scholar
  92. 92.
    Hao, Y., Zhu, X., Huang, M., Li, M.: Discovering patterns to extract protein-protein interactions from the literature: Part II. Bioinformatics 21(15), 3294–3300 (2005)CrossRefGoogle Scholar
  93. 93.
    Phuong, T.M., Lee, D., Lee, K.H.: Learning rules to extract protein interactions from biomedical text. In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD 2003. LNCS (LNAI), vol. 2637. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  94. 94.
    Andrade, M.A., Valencia, A.: Automatic extraction of keywords from scientific text: application to the knowledge domain of protein families. Bioinformatic 14(7), 600–607 (1998)CrossRefGoogle Scholar
  95. 95.
    Craven, M.: Learning to extract relations from medline. In: Proc. AAAI 1999 Workshop on Machine Learning for Information Extraction, pp. 25–30 (1999)Google Scholar
  96. 96.
    Mark, C., Johan, K.: Constructing biological knowledge bases by extracting information from text sources. In: Proc. 7th International Conference on Intelligent Systems for Molecular Biology, Heidelberg, Germany, pp. 77–86 (1999)Google Scholar
  97. 97.
    Stapley, B., Benoit, G.: Biobibliometrics: information retrieval and visualization from co-occurrences of gene names in Medline abstracts. In: Proc. Pacific Symposium on Biocomputing, Hawaii, U.S.A., pp. 529–540 (2000)Google Scholar
  98. 98.
    Stephens, M., Palakal, M., Mukhopadhyay, S., Raje, R., Mostafa, J.: Detecting gene relations from MEDLINE abstracts. In: Proc. Pacific Symposium on Biocomputing, Hawaii, USA, vol. 6, pp. 483–495 (2001)Google Scholar
  99. 99.
    Jenssen, T., Laegreid, A., Komorowski, J., Hovig, E.: A literature network of human genes for high-throughput analysis of gene expression. Nature Genetics 28(1), 21–28 (2001)CrossRefGoogle Scholar
  100. 100.
    Marcotte, E.M., Xenarios, I., Eisenberg, D.: Mining literature for protein-protein interactions. Bioinformatics 17(4), 359–363 (2001)CrossRefGoogle Scholar
  101. 101.
    Hahn, U., Romarker, M.: Rich knowledge capture from medical documents in the MEDSYNDIKATE system. In: Proc. Pacific Symposium on Biocomputing, Hawaii, U.S.A., pp. 338–349 (2002)Google Scholar
  102. 102.
    Eom, J.H., Zhang, B.T.: PubMiner: Machine Learning-Based Text Mining System for Biomedical Information Mining. In: Bussler, C.J., Fensel, D. (eds.) AIMSA 2004. LNCS (LNAI), vol. 3192. Springer, Heidelberg (2004)Google Scholar
  103. 103.
    Rosario, B., Hearst, M.: Multi-way Relation Classification: Application to Protein-Protein Interaction. In: Proc. HLT-NAACL 2005, Vancouver (2005)Google Scholar
  104. 104.
    Mooney, R.J., Bunescu, R.: Mining knowledge from text using information extraction. SIGKDD Explor. Newsl. 7(1), 3–10 (2005)CrossRefGoogle Scholar
  105. 105.
    Bunescu, R., Ge, R., Kate, R.J., Marcotte, E.M., Mooney, R.J., Ramani, A.K., Wong, Y.W.: Comparative experiments on learning information extractors for proteins and their interactions. Journal of Artificial Intelligence in Medicine, 139–155 (2005)Google Scholar
  106. 106.
    Chun, H.w., Tsuruoka, Y., Kim, J.D., Shiba, R., Nagata, N., Hishiki, T., Tsujii, J.: Extraction of Gene-Disease Relations from MedLine using Domain Dictionaries and Machine Learning. In: Proc. Pacific Symposium on Biocomputing (PSB), pp. 4–15 (2006) Google Scholar
  107. 107.
    Zhou, D., He, Y., Kwoh, C.K.: Extracting Protein-Protein Interactions from the Literature using the Hidden Vector State Model. In: Proc. International Workshop on Bioinformatics Research and Applications, Reading, UK (2006)Google Scholar
  108. 108.
    He, Y., Young, S.: Semantic processing using the hidden vector state model. Computer Speech and Language 19(1), 85–106 (2005)CrossRefGoogle Scholar
  109. 109.
    Hirschman, L., Yeh, A., Blaschke, C., Valencia, A.: Overview of BioCreAtIvE: critical assessment of information extraction for biology. BMC Bioinformatics 6(supp. 1) (2004)Google Scholar
  110. 110.
    Christian, B., Alexander, Y., Evelyn, C., Marc, C., Rolf, A., Lynette, H., Alfonso, V.: Do you do text? Bioinformatics 21(23), 4199–4200 (2005)CrossRefGoogle Scholar
  111. 111.
    Nédellec, C.: Learning Language in Logic - Genic Interaction Extraction Challenge. In: Proc. Learning Language in Logic workshop (LLL 2005), pp. 31–37 (2005)Google Scholar
  112. 112.
    Ashburner, M., Ball, C., Blake, J., Botstein, D.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genetics 25(1), 25–29 (2000)CrossRefGoogle Scholar
  113. 113.
    Lomax, J.: Get ready to GO! A biologist’s guide to the Gene Ontology. Briefings in Bioinformatics 6(3), 298–304 (2005)CrossRefGoogle Scholar
  114. 114.
    Salton, G.: Automatic Text Processing. Addison-Wesley series in Computer Science (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Deyu Zhou
    • 1
  • Yulan He
    • 1
  • Chee Keong Kwoh
    • 2
  1. 1.Informatics Research CentreThe University of ReadingReadingUK
  2. 2.School of Computer EngineeringNanyang Technological UniversitySingapore

Personalised recommendations