Advertisement

Proposals for Iterated Hash Functions

  • Lars R. Knudsen
  • Søren S. Thomsen
Part of the Communications in Computer and Information Science book series (CCIS, volume 9)

Abstract

The past few years have seen an increase in the number of attacks on cryptographic hash functions. These include attacks directed at specific hash functions, and generic attacks on the typical method of constructing hash functions. In this paper we discuss possible methods for protecting against some generic attacks. We also give a concrete proposal for a new hash function construction, given a secure compression function which, unlike in typical existing constructions, is not required to be resistant to all types of collisions. Finally, we show how members of the SHA-family can be turned into constructions of our proposed type.

Keywords

Cryptographic hash functions Merkle-Damgård constructions multi-collisions birthday attacks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Damgård, I.: A Design Principle for Hash Functions. In: [19], pp. 416–427.Google Scholar
  2. 2.
    Merkle, R.C.: One Way Hash Functions and DES. In: [19], pp. 428–446.Google Scholar
  3. 3.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: [20], pp. 19–35.Google Scholar
  4. 4.
    Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of SHA-0 and Reduced SHA-1. In: [20], pp. 36–57.Google Scholar
  5. 5.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    FIPS 180-1, Secure Hash Standard. Federal Information Processing Standards Publication 180-1, U.S. Department of Commerce/NIST, National Technical Information Service, Springfield, Virginia. Supersedes FIPS 180 (1995)Google Scholar
  7. 7.
    FIPS 180-2, Secure Hash Standard. Federal Information Processing Standards Publication 180-2, U.S. Department of Commerce/NIST, National Technical Information Service, Springfield, Virginia. Supersedes FIPS 180 and FIPS 180-1 (2002)Google Scholar
  8. 8.
    Preneel, B.: Analysis and Design of Cryptographic Hash Functions. PhD thesis, Katholieke Universiteit Leuven (1993)Google Scholar
  9. 9.
    Handschuh, H., Knudsen, L., Robshaw, M.: Analysis of SHA-1 in Encryption Mode. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 70–83. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much Less than 2n Work. In: [20], pp. 474–490.Google Scholar
  13. 13.
    Ferguson, N., Schneier, B.: Practical Cryptography. Wiley Publishing, Chichester (2003)Google Scholar
  14. 14.
    Preneel, B., Govaerts, R., Vandewalle, J.: Hash Functions Based on Block Ciphers: A Synthetic Approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994)Google Scholar
  15. 15.
    Gauravaram, P., Millan, W., Dawson, E., Viswanathan, K.: Constructing Secure Hash Functions by Enhancing Merkle-Damgård Construction. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 407–420. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Kaliski, B.: RFC 1319, The MD2 Message-Digest Algorithm. Internet Request for Comments 1319 (1992)Google Scholar
  17. 17.
    Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Rivest, R.L.: Abelian square-free dithering for iterated hash functions. In: NIST Cryptographic Hash Workshop (November 2005). retrieved from http://theory.lcs.mit.edu/~rivest/
  19. 19.
    Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  20. 20.
    Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg (2005)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Lars R. Knudsen
    • 1
  • Søren S. Thomsen
    • 1
  1. 1.Department of MathematicsTechnical University of DenmarkLyngbyDenmark

Personalised recommendations