Advertisement

Historical Overview and Fundamental Aspects of Molecular Catalysts for Energy Conversion

  • T. Okada
  • T. Abe
  • M. Kaneko
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 111)

Abstract

In this chapter we focus on the historical background of the electrocatalysts especially of molecular catalysts that are considered as key technology for energy conversion systems. The energy conversion is a basic process with which humans can utilize natural energy by converting into useful forms of energy such as heat, electricity, or other secondary energies. The most important process to be established in this century will be the usage of renewable energy, which has least impact on the global environment. The central technologies for this process will be solar cells, photosynthesis, and fuel cells. Hydrogen energy society would be the most probable choice interconnecting these technologies, and toward this goal the establishment of efficient catalysts is indispensable. The designing of molecular catalysts is an important issue for solving the energy conversion yields and efficiency. Through biomimetic approaches many good candidates of catalysts for energy conversion have been studied. Porphyrins from cytochrome analogs have been studied since late 1960s as oxygen reduction center or oxygen carrier with variety of modifications. Also reduction of H+ is part of an artificial photosynthesis, and many supra-molecular and hybrid complexes are studied since 1970s. The chapter starts with the history and design concepts of oxygen reduction catalysts and fuel oxidation catalysts in fuel cells, to cope with the control of multi-electron transfer reactions. The state-of-the-art molecular catalysts are characterized as metal-nitrogen ligand complex or metal-nitrogen-oxygen conjugates on carbon support. Photochemical reduction of H+ is reviewed which is coupled to water oxidation, where historically metallophthalocyanines or polypyridyl complexes are studied intensively since mid-1980s. Charge separation antenna chlorophylls are models of dye-sensitizers for photoreductive H2 evolution, and these are incorporated in Graetzel cell for electrochemical solar cells. Design and application of molecular catalysts for these cells are reviewed.

Keywords

Fuel Cell Oxygen Reduction Reaction Water Oxidation Direct Methanol Fuel Cell Historical Overview 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.R. Grove, Phil. Mag. 14, 127 (1839)Google Scholar
  2. 2.
    R. Williams, J. Chem. Phys. 32, 1505 (1960)Google Scholar
  3. 3.
    L.J. Kleinsmith, V.M. Kish, Principles of Cell Biology (Harper & Row, New York 1988)Google Scholar
  4. 4.
    J.O.M. Bockris, S. Srinivasan, Fuel Cells: Their Electrochemistry (McGraw-Hill, New York 1969)Google Scholar
  5. 5.
    K. Kordesch, G. Simader, Fuel Cells and Their Applications (VCH, Weinheim 1996)Google Scholar
  6. 6.
    H. Kita, T. Kurisu, J. Res. Inst. Catal., Hokkaido Univ. 21, 200 (1973)Google Scholar
  7. 7.
    A.J. Appleby, F.R. Foulkes, Fuel Cell Handbook (Van Nostrand Reinhold, New York 1989)Google Scholar
  8. 8.
    U.R. Evans, Nature 218, 602 (1968)Google Scholar
  9. 9.
    R. Jasinski, Nature 201, 1212 (1964)Google Scholar
  10. 10.
    J.H. Zagal, Coordination Chem. Rev. 119, 89 (1992)Google Scholar
  11. 11.
    T. Abe, M. Kaneko, Prog. Polym. Sci. 28, 1441 (2003)Google Scholar
  12. 12.
    L. Stryer, Biochemistry (W. H. Freeman, San Francisco, CA 1975)Google Scholar
  13. 13.
    J.S. Bett, H.R. Kunz, A.J. Aldykiewicz Jr., J.M. Fenton, W.F. Bailey, D.V. McGrath, Electrochem. Acta 43, 3645 (1998)Google Scholar
  14. 14.
    R. Venkataraman, H.R. Kunz, J.M. Fenton, J. Electrochem.Soc.151,A703(2004)Google Scholar
  15. 15.
    X. Zhou, W. Xing, C. Liu, T. Lu, Electrochem. Commn. 9, 1469 (2007)Google Scholar
  16. 16.
    H. S. Wroblowa, Y.C. Pan, G. Razumsney, J. Electroanal. Chem. 69, 195 (1976)Google Scholar
  17. 17.
    K. Kinoshita, Electrochemical Oxygen Technology, Chap. 2 (Wiley, New York, 1992)Google Scholar
  18. 18.
    A.B. Anderson, T.V. Albu, J. Am. Chem. Soc. 121, 11855 (1999)Google Scholar
  19. 19.
    A.B. Anderson, T.V. Albu, J. Electrochem. Soc. 147, 4229 (2000)Google Scholar
  20. 20.
    C.F. Zinola, A.J. Arviá, G.L. Estiú, E.A. Castro, J. Phys. Chem. 98, 7566 (1994)Google Scholar
  21. 21.
    E. Leiva, C. Sánchez, in Handbook of Fuel Cells-Fundamentals, Technology and Applications, Vol. 2, Chap. 11, ed. by W. Vielstich, H.A. Gasteiger, A. Lamm (Wiley, Chichester, 2003)Google Scholar
  22. 22.
    J.K. Nøskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaad, H. Jónsson, J. Phys. Chem. B 108, 17886 (2004)Google Scholar
  23. 23.
    M.L. Rao, A. Danjanovic, J.O.M. Bockris, J. Phys. Chem. 67, 2508 (1963)Google Scholar
  24. 24.
    L. Pauling, Proc. Roy. Soc. Lond. A196, 343 (1949)Google Scholar
  25. 25.
    A.J. Appleby, Catal. Rev. 4, 221 (1970)Google Scholar
  26. 26.
    K.J. Vetter, Electrochemical Kinetics (Academic, New York, 1967)Google Scholar
  27. 27.
    M. Eisenberg, in Physical Chemistry An Advanced Treatise, Vol. IXB, Chap. 9, ed. by H. Eyring, D. Henderson, W. Jost (Academic, New York, 1970)Google Scholar
  28. 28.
    U.R. Evans, Electrochim. Acta 14, 197 (1969)Google Scholar
  29. 29.
    A.J. Appleby, in Modern Aspects of Eectrochemistry, Vol. 9, Chap. 5, ed. by B.E. Conway, J.O.M. Bockris (Plenum, New York, 1974)Google Scholar
  30. 30.
    E. Gileadi, Electrode Kinetics, Chap. 19 (Wiley-VCH, New York, 1993)Google Scholar
  31. 31.
    T. Toda, H. Igarashi, H. Uchida, M. Watanabe, J. Electrochem. Soc. 146, 3750. (1999)Google Scholar
  32. 32.
    V. Jalan, E.J. Taylor, J. Electrochem. Soc. 130, 2299 (1983)Google Scholar
  33. 33.
    R. Jasinski, J. Electrochem. Soc. 112: 526 (1965)Google Scholar
  34. 34.
    J.P. Randin, Electrochim. Acta 19, 83 (1974)Google Scholar
  35. 35.
    R. Hoffmann, M.M.L. Chen, D.L. Thorn, 16: 503 (1977)Google Scholar
  36. 36.
    J.H. Zagal, M. Gulppi, M. Isaacs, G. Cárdenas-Jirón, M.J. Aguirre, Electrochim. Acta 44, 1349 (1998)Google Scholar
  37. 37.
    R. Taube, Pure Appl. Chem. 38, 427 (1974)Google Scholar
  38. 38.
    J.A.R. van Veen, J.F. van Baar, C.J. Kroese, J.G.F. Coolegem, N. de Wit, H.A. Colijn, Ber. Bunsenges. Phys. Chem. 85, 693 (1981)Google Scholar
  39. 39.
    E. Yeager, J. Mol. Cat. 38, 5 (1986)Google Scholar
  40. 40.
    J.P. Collman, P. Denisevich, Y. Konai, M. Marrocco, C. Koval, F.C. Anson, J. Am. Chem. Soc. 102, 6027 (1980)Google Scholar
  41. 41.
    E. Yeager, Electrochim. Acta 29, 1527 (1984)Google Scholar
  42. 42.
    H.Y. Liu, M.J. Weaver, C.B. Wang, C.K. Chang, J. Electroanal. Chem. 145, 439 (1983)Google Scholar
  43. 43.
    U.B. Demirci, J. Power Sources 169, 239 (2007)Google Scholar
  44. 44.
    J. Horiuti, in Physical Chemistry An Advanced Treatise, Vol. IXB, Chap. 6, ed. by H. Eyring, D. Henderson, W. Jost (Academic, New York, 1970)Google Scholar
  45. 45.
    O.A. Petrii, G.A. Tsirlina, Electrochim. Acta 39, 1739 (1994)Google Scholar
  46. 46.
    N.M. Marković, in Handbook of Fuel Cells-Fundamentals, Technology and Applications, Vol. 2, Chap. 26, ed. by W. Vielstich, H.A. Gasteiger, A. Lamm (Wiley, Chichester, 2003)Google Scholar
  47. 47.
    B.E. Conway, J.O.M. Bockris, J. Chem. Phys. 26, 532 (1957)Google Scholar
  48. 48.
    H. Böhm, J. Power Sources 1, 177 (1976)Google Scholar
  49. 49.
    A. Volbeda, M.H. Charon, C. Piras, E.C. Hatchikian, M. Frey, J.C. Fontecilia-Camps, Nature 373, 580 (1995)Google Scholar
  50. 50.
    S. Ogo, R. Kabe, K. Uehara, B. Kure, T. Nishimura, S.C. Menton, R. Harada, S. Fukuzumi, Y. Higuchi, T. Ohhara, T. Tamada, R. Kuroki, Science 316, 585 (2007)Google Scholar
  51. 51.
    B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jøgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nøskov, J. Am. Chem. Soc. 127, 5308 (2005)Google Scholar
  52. 52.
    C. Lamy, J.M. Léger, S. Srinivasan, in Modern Aspects of Electrochemistry, Vol. 34, Chap. 3, ed. by J.O.M. Bockris, B.E. Conway, R.E. White (Kluwer/Plenum, New York, 2001)Google Scholar
  53. 53.
    S. Wasmus, A. Küver, J. Electroanal. Chem. 461, 14 (1999)Google Scholar
  54. 54.
    A. Hamnett, Catal. Today 38, 445 (1997)Google Scholar
  55. 55.
    T. Iwasita, in Handbook of Fuel Cells-Fundamentals, Technology and Applications, Vol. 2, Chap. 41, ed. by W. Vielstich, H.A. Gasteiger, A. Lamm (Wiley, Chichester, 2003)Google Scholar
  56. 56.
    M.M. Janssen, J. Moolhuysen, Electrochim. Acta 21, 861, 869 (1976)Google Scholar
  57. 57.
    T. Iwasita, Electrochim. Acta 47, 3663 (2002)Google Scholar
  58. 58.
    L.W. Niedrach, H.I. Zeliger, J. Electrochem. Soc. 116, 152 (1969)Google Scholar
  59. 59.
    P.J. Kulesza, L.R. Faulkner, J. Electroanal. Chem. 259, 81 (1989)Google Scholar
  60. 60.
    P.K. Shen, A.C.C. Tseung, J. Electrochem. Soc. 141, 3028 (1994)Google Scholar
  61. 61.
    Y. Wang, E.R. Fachini, G. Cruz, Y. Zhu, Y. Ishikawa, J.A. Colucci, C.R. Cabrera, J. Electrochem. Soc. 148, C222 (2001)Google Scholar
  62. 62.
    R.Z. Khalliullin, A.T. Bell, J. Phys. Chem. B 106, 7832 (2002)Google Scholar
  63. 63.
    G.T. Burnstein, C.J. Barnett, A.R.J. Kucernak, K.R. Williams, Electrochem. Soc. Lett. 143, L139 (1996)Google Scholar
  64. 64.
    V. Raghuveer, K.R. Thampi, N. Xanthopoulos, H.J. Mathieu, B. Viswanathan, Solid State Ionics 140, 263 (2001)Google Scholar
  65. 65.
    Goetz M, Wendt H, Workshop Electrocatalysis in Indirect and Direct Methanol PEM Fuel Cells (Portoroz, Slovenia, 1999), pp. 87–90Google Scholar
  66. 66.
    T. Okada, Y. Suzuki, T. Hirose, T. Ozawa, Chem. Comm. 2001, 2492 (2001)CrossRefGoogle Scholar
  67. 67.
    T. Okada, Y. Suzuki, T. Hirose, T. Ozawa, Electrochim. Acta 49, 385 (2004)Google Scholar
  68. 68.
    T. Okada, N. Arimura, C. Ono, M. Yuasa, Electrochim. Acta 51, 1130 (2005)Google Scholar
  69. 69.
    J.F. van Baar, J.A.R. van Veen, J.M. van der Eijk, T.h.J. Peters, N. de Wit, Electrochim. Acta 27, 1315 (1982)Google Scholar
  70. 70.
    E. Herrero, W. Chrzanowski, A. Wieckowski, J. Phys. Chem. 99, 10423 (1995)Google Scholar
  71. 71.
    Y.X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, J. Am. Chem. Soc. 125, 3680 (2003)Google Scholar
  72. 72.
    M. Watanabe, S. Motoo, J. Electroanal. Chem. 60, 267 (1975)Google Scholar
  73. 73.
    T. Yajima, H. Uchida, M. Watanabe, J. Phys. Chem. 108, 2654 (2004)Google Scholar
  74. 74.
    T. Frelink, W. Visscher, J.A.R. van Veen, Surf. Sci. 335, 353 (1995)Google Scholar
  75. 75.
    Y. Zhu, Z. Khan, R.I. Masel, J. Power Sources 139, 15 (2005)Google Scholar
  76. 76.
    P. Waszczuk, A. Crown, S. Mitrovski, A. Wieckowski, in Handbook of Fuel Cells-Fundamentals, Technology and Applications, Vol. 2, Chap. 43, ed. by W. Vielstich, H.A. Gasteiger, A. Lamm (Wiley, Chichester, 2003)Google Scholar
  77. 77.
    C. Rice, S. Ha, R.I. Masel, A. Wieckowski, J. Power Sources 115, 229 (2003)Google Scholar
  78. 78.
    S. Uhm, S.T. Chung, J. Lee, Electrochem. Comm. 9, 2027 (2007)Google Scholar
  79. 79.
    S. Kang, J. Lee, J.K. Lee, S.Y. Chung, Y. Tak, J. Phys. Chem. 110, 7270 (2006)Google Scholar
  80. 80.
    E. Casado-Rivera, D.J. Volpe, L. Alden, C. Lind, C. Downie, T. Vázquez-Alvarez, A.C.D. Angelo, F.J. DiSalvo, H.D. Abruña, J. Am. Chem. Soc. 126, 4043 (2004)Google Scholar
  81. 81.
    R. Parsons, T. Vander Noot, J. Electroanal. Chem. 257: 9 (1988)Google Scholar
  82. 82.
    X.H. Xia, T. Iwasita, J. Electrochem. Soc. 140, 2559 (1993)Google Scholar
  83. 83.
    J.D. Lović, A.V. Tripković, S.L.J. Gojković, K.D.J. Popović, D.V. Tripković, P. Olszewski, A. Kowal, J. Electroanal. Chem. 581, 294 (2005)Google Scholar
  84. 84.
    G. Samjeské, A. Miki, S. Ye, M. Osawa, J. Phys. Chem. 110, 16559 (2006)Google Scholar
  85. 85.
    A. Ruban, B. Hammer, P. Stoltze, H.L. Skriver, J.K. Nøskov, J. Mol. Catal. A 115, 421 (1997)Google Scholar
  86. 86.
    U.B. Demirci, J. Power Sources 173, 11 (2007)Google Scholar
  87. 87.
    D.O. Hall, K.K. Rao, Photosynthesis, 6th edn (Cambridge University Press, Cambridge, 1999)Google Scholar
  88. 88.
    W. Ruetinger, G.C. Dismukes, Chem. Rev. 97, 1 (1997)Google Scholar
  89. 89.
    R. Manchanda, G.W. Brudvig, Coord. Chem. Rev. 144, 1 (1995)Google Scholar
  90. 90.
    V.L. Pecoraro, M.J. Baldwin, A. Gelasco, Chem. Rev. 94, 807 (1994)Google Scholar
  91. 91.
    D. Wöhrle, M. Kaneko, Macromolecular metal complexes in biological systems, in Metal Complexes and Metals in Macromolecule, Chap. 2, ed. by D. Wöhrle, A.D. Pomogailo (Wiley-VCH, New York, 2003), pp. 25–63Google Scholar
  92. 92.
    M. Kaneko, D. Wöhrle, Photocatalytic properties, in Metal Complexes and Metals in Macromolecule, Chap. 13, ed. by D. Wöhrle, A.D. Pomogailo (Wiley-VCH, New York, 2003), pp. 573–600Google Scholar
  93. 93.
    M. Yagi, M. Kaneko, Chem. Rev. 101, 21 (2001)Google Scholar
  94. 94.
    I. Taniguchi, Electrochemical and photochemical reduction of Carbon dioxide, in Modern Aspects of Electrochemistry, ed. by J.O.M. Bockris, B.E. Conway, R.E. White (Springer, Berlin, 1989), pp. 327–400Google Scholar
  95. 95.
    E. Tiemann, J. Demaison, Landolt-Börnstein Tables, New Series, II/6 (Springer, Berlin, 1983)Google Scholar
  96. 96.
    M.H. Halmann, Chemical Fixation of Carbon Dioxide (CRC Press, Boca Raton, FL, 1993)Google Scholar
  97. 97.
    J.M. Lehn, J.P. Sauvage, Nouv. J. Chem. 1, 449 (1977)Google Scholar
  98. 98.
    J. Kiwi, M. Grätzel, J. Am. Chem. Soc. 101, 7214 (1979)Google Scholar
  99. 99.
    N. Toshima, M. Kuriyama, Y. Yamada, H. Hirai, Chem. Lett. 793 (1981)Google Scholar
  100. 100.
    S. Shimizu, J. Adv. Sci. 16, i.1 (2005)Google Scholar
  101. 101.
    S. Meshitsuka, M. Ichikawa, K. Tamaru, J. Chem. Soc. Chem. Commun. 158 (1974)Google Scholar
  102. 102.
    N. Furuya, K. Matsui, J. Electroanal. Chem. 271, 181 (1989)Google Scholar
  103. 103.
    M. Isaacs, F. Armijo, G. Ramírez, E. Trollund, S.R. Biaggio, J. Costamagna, M.J. Aguirre, J. Mol. Catal. A:Chem. 229, 249 (2005)Google Scholar
  104. 104.
    T.V. Magdesieva, K.P. Buttin, T. Yamamoto, D.A. Tryk, A. Fujishima, J. Electrochem. Soc. 150, E608 (2003)Google Scholar
  105. 105.
    C.M. Lieber, N.S. Lewis, J. Am. Chem. Soc. 106, 5033 (1984)Google Scholar
  106. 106.
    T. Yoshida, K. Kamato, M. Tsukamoto, T. Iida, D. Schlettwein, D. Wöhrle, K. Kaneko, J. Electroanal. Chem. 385, 209.(1995)Google Scholar
  107. 107.
    T. Abe, T. Yoshida, S. Tokita, F. Taguchi, H. Imaya, M. Kaneko, J. Electroanal. Chem. 412, 125 (1996)Google Scholar
  108. 108.
    T. Abe, F. Taguchi, T. Yoshida, S. Tokita, G. Schnurpfeil, D. Wöhrle, M. Kaneko, J. Mol. Catal. A: Chem. 112, 55 (1996)Google Scholar
  109. 109.
    T. Abe, H. Imaya, T. Yoshida, S. Tokita, D. Schlettwein, D. Wöhrle, M. Kaneko, J. Porphyrins Phthalocyanines 1, 315 (1997)Google Scholar
  110. 110.
    H. Ishida, K. Tanaka, T. Tanaka, J. Chem. Soc. Chem. Commun. 131 (1987)Google Scholar
  111. 111.
    H. Nagao, T. Mizukawa, K. Tanaka, Inorg. Chem. 33, 3415 (1994)Google Scholar
  112. 112.
    H. Nakajima, K. Tanaka, Chem. Lett. 891 (1995)Google Scholar
  113. 113.
    T. Mizukawa, K. Tsuge, H. Nakajima, K. Tanaka, Angew. Chem. Int. Ed. 38, 362 (1999)Google Scholar
  114. 114.
    Y. Kurimura, M. Kaneko, Metal-Polymer Complex, in Polymeric Materials Encyclopedia, ed. by J.C. Salamone (CRC Press, Boca Raton, FL, 1996), pp 4149–4155Google Scholar
  115. 115.
    M.N. Collomb-Dunand-Sauthier, A. Deronzier, R. Ziessel, Inorg. Chem. 33, 2961 (1994)Google Scholar
  116. 116.
    S. Chardon-Noblat, A. Pellissier, G. Cripps, A. Deronzier, J. Electroanal. Chem. 597, 28 (2006)Google Scholar
  117. 117.
    J. Hawecker, J.M. Lehn, R. Ziessel, J. Chem. Soc. Chem. Commun. 328 (1984)Google Scholar
  118. 118.
    T. Yoshida, T. Iida, T. Shirasagi, R.J. Lin, M. Kaneko, J. Electroanal. Chem. 344, 355 (1993)Google Scholar
  119. 119.
    K.M. Lam, K.Y. Wong, S.M. Yang, C.M. Che, J. Chem. Soc. Dalton Trans. 1103 (1995)Google Scholar
  120. 120.
    J.A. Ramos Sende, C.R. Arana, L. Hernández, K.T. Potts, K.M. Keshevarz, H.D. Abruña, Inorg. Chem. 34, 3339 (1995)Google Scholar
  121. 121.
    G. Chiericato Jr., C.R. Arana, C. Casado, I. Cuadrado, H.D. Abruña, Inorg. Chim. Acta 300–302, 32 (2000)Google Scholar
  122. 122.
    F. Mebsout, J.M. Kauffmann, G.J. Patriarche, J. Pharm. Biomed. Anal. 6, 441 (1988)Google Scholar
  123. 123.
    M. Fleischmann, G. Sundholm, J. Electroanal. Chem. 30, App. 4 (1971)Google Scholar
  124. 124.
    T. Abe, K. Takahashi, Y. Shiraishi, N. Toshima, M. Kaneko, Macromol. Chem. Phys. 201, 102 (2000)Google Scholar
  125. 125.
    T. Abe, K. Hirano, Y. Shiraishi, N. Toshima, M. Kaneko, Eur. Polym. J. 37, 753 (2001)Google Scholar
  126. 126.
    P. Keller, A. Moradpour, J. Am. Chem. Soc. 102, 7193 (1980)Google Scholar
  127. 127.
    E. Amouyal, D. Grand, A. Moradpour, P. Keller, Nouv. J. Chem. 6, 241 (1982)Google Scholar
  128. 128.
    R. Rafaeloff, Y. Haruvy, G. Binenboym, G. Baruch, L.A. Rajbenbach, J. Mol. Catal. 22, 219 (1983)Google Scholar
  129. 129.
    N. Toshima, T. Takahashi, H. Hirai, Chem. Lett. 1031 (1987)Google Scholar
  130. 130.
    A. Harriman, J. Chem. Soc. Chem. Commun. 24 (1990)Google Scholar
  131. 131.
    N. Toshima, M. Harada, T. Yonezawa, K. Kushihashi, K. Asakura, J. Phys. Chem. 95, 7448 (1991)Google Scholar
  132. 132.
    T. Yonezawa, N. Toshima, J. Mol. Catal. 83, 167 (1993)Google Scholar
  133. 133.
    N. Toshima, K. Hirakawa, Polym. J. 31, 1127 (1999)Google Scholar
  134. 134.
    N. Toshima, Pure Appl. Chem. 72, 317 (2000)Google Scholar
  135. 135.
    A.W. Addison, W.R. Cullen, D. Dolphin, B.R. James, Biological Aspects of Inorganic Chemistry (Wiley, New York, 1977)Google Scholar
  136. 136.
    H.G. Schlegel, K. Schneider, Hydrogenase: Their Catalytic Activity, Structure and Function (Erich Goltze KG, Göttingen, 1978)Google Scholar
  137. 137.
    S. Aono, I. Okura, A. Yamada, J. Phys. Chem. 89, 1593 (1985)Google Scholar
  138. 138.
    M. Razavet, V. Artero, M. Fontecave, Inorg. Chem. 44, 4786 (2005)Google Scholar
  139. 139.
    J.W. Peters, W.N. Lanzilotta, B.J. Lemon, L.C. Seefeldt, Science 282, 1853 (1998)Google Scholar
  140. 140.
    A.K. Jones, E. Sillery, S.P.J. Albracht, F.A. Armstrong, Chem. Commun. 866 (2002)Google Scholar
  141. 141.
    C. Greco, G. Zampella, L. Bertini, M. Bruschi, P. Fantucci, L. De Gioia, Inorg. Chem. 46, 108 (2007)Google Scholar
  142. 142.
    L. Duan, M. Wang, P. Li, Y. Na, N. Wang, L. Sun, Dalton Trans. 1277 (2007)Google Scholar
  143. 143.
    D. Chong, I.P. Georgakaki, R. Mejia-Rodriguez, J. Sanabria-Chinchilla, M.P. Soriaga, M.Y. Darensbourg, Dalton Trans. 4158 (2003)Google Scholar
  144. 144.
    R.H. Crabtree, Inorg. Chim. Acta 125, L7 (1986)Google Scholar
  145. 145.
    A.I. Krasna, D. Rittenberg, J. Am. Chem. Soc. 76, 3015 (1954)Google Scholar
  146. 146.
    G.J. Kubas, Acc. Chem. Res. 21, 120 (1988)Google Scholar
  147. 147.
    J.P. Collman, P.S. Wangenknett, R.T. Hembre, N.S. Lewis, J. Am. Chem. Soc. 112, 1294 (1990)Google Scholar
  148. 148.
    J.P. Collman, P.S. Wangenknett, N.S. Lewis, J. Am. Chem. Soc. 114, 5665 (1992)Google Scholar
  149. 149.
    I. Bhugun, D. Lexa, J.M. Savéant, J. Am. Chem. Soc. 118, 3982 (1996)Google Scholar
  150. 150.
    V. Grass, D. Lexa, J.M. Savéant, J. Am. Chem. Soc. 119, 7526 (1997)Google Scholar
  151. 151.
    T. Abe, F. Taguchi, H. Imaya, F. Zhao, J. Zhang, M. Kaneko, Polym. Adv. Technol. 9, 559 (1998)Google Scholar
  152. 152.
    F. Taguchi, T. Abe, M. Kaneko, J. Mol. Catal. A: Chem. 140, 41 (1999)Google Scholar
  153. 153.
    T. Abe, M. Kaneko, J. Mol. Catal. A: Chem. 169, 177 (2001)Google Scholar
  154. 154.
    T. Abe, F. Taguchi, S. Tokita, M. Kaneko, J. Mol. Catal. A: Chem. 126, L89 (1997)Google Scholar
  155. 155.
    T. Abe, G. Toda, A. Tajiri, M. Kaneko, J. Electroanal. Chem. 510, 35 (2001)Google Scholar
  156. 156.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)Google Scholar
  157. 157.
    B. O’Regan, M. Grätzel, Nature 353, 737 (1991)Google Scholar
  158. 158.
    E. Bae, W. Choi, J. Phys. Chem. B 110, 14792 (2006)Google Scholar
  159. 159.
    M. Grätzel, Energy Resources Through Photochemistry and Catalysis (Academic, London, 1983)Google Scholar
  160. 160.
    S.M. Ji, P.H. Borse, H.G. Kim, D.W. Hwang, J.S. Jang, S.W. Bae, J.S. Lee, Phys. Chem. Chem. Phys. 7, 1315 (2005)Google Scholar
  161. 161.
    Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Bull. Chem. Soc. Jpn. 80, 885 (2007)Google Scholar
  162. 162.
    W. Yao, J. Ye, J. Phys. Chem. B 110, 11188 (2006)Google Scholar
  163. 163.
    Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature 414, 625 (2001)Google Scholar
  164. 164.
    K. Maeda, K. Teramura, H. Masuda, T. Takata, N. Saito, Y. Inoue, K. Domen, J. Phys. Chem. B 110, 13107 (2006)Google Scholar
  165. 165.
    I. Tsuji, H. Kato, A. Kudo, Chem. Mater. 18, 1969 (2006)Google Scholar
  166. 166.
    J. Hawecker, J.M. Lehn, R. Ziessel, J. Chem. Soc. Chem. Commun. 56, (1985)Google Scholar
  167. 167.
    H. Ishida, T. Terada, K. Tanaka, T. Tanaka, Inorg. Chem. 29, 905 (1990)Google Scholar
  168. 168.
    C.A. Craig, L.O. Spreer, J.W. Otvos, M. Calvin, J. Phys. Chem. 94, 7957 (1990)Google Scholar
  169. 169.
    I. Willner, R. Maidan, D. Mandler, H. Dürr, G. Dörr, K. Zengerle, J. Am. Chem. Soc. 109, 6080 (1987)Google Scholar
  170. 170.
    M. Kaneko, N. Katakura, C. Harada, Y. Takei, M. Hoshino, Chem. Commun. 3436 (2005)Google Scholar
  171. 171.
    J. Nemoto, C. Harada, Y. Takei, N. Katakura, M. Kaneko, Photochem. Photobiol. Sci. 6, 77 (2007)Google Scholar
  172. 172.
    B. Gholamkhass, H. Mametsuka, K. Koike, T. Tanabe, M. Furue, O. Ishitani, Inorg. Chem. 44, 2326 (2005)Google Scholar
  173. 173.
    H. Ozawa, M. Haga, K. Sakai, J. Am. Chem. Soc. 128, 4926 (2006)Google Scholar
  174. 174.
    G. Ruiz, E. Wolcan, A.L. Capparelli, M.R. Féliz, J. Photochem. Photobiol. A: Chem. 89, 61 (1995)Google Scholar
  175. 175.
    H. Hori, F.P.A. Johnson, K. Koike, K. Takeuchi, T. Ibusuki, O. Ishitani, J. Chem. Soc. Dalton Trans. 1019 (1997)Google Scholar
  176. 176.
    M. Kaneko, I. Okura, Photocatalysis (Kohdansha-Springer, Tokyo, 2002)Google Scholar
  177. 177.
    H. Imahori, K. Mitamura, Y. Shibano, T. Umeyama, Y. Matano, K. Yoshida, S. Isoda, Y. Araki, O. Ito, J. Phys. Chem. B 110, 11399 (2006)Google Scholar
  178. 178.
    H. Ma, M.S. Kang, Q.M. Xu, K.S. Kim, and A.K.Y. Jen, Chem. Mater. 17, 2896 (2005)Google Scholar
  179. 179.
    S. Yang, L. Fan, S. Yang, J. Phys. Chem. B 108, 4394 (2004)Google Scholar
  180. 180.
    W. Brütting, Physics of Organic Semiconductor (Wiley-VCH, Weinheim, 2005)Google Scholar
  181. 181.
    T. Abe, K. Nagai, M. Kaneko, T. Okubo, K. Sekimoto, A. Tajiri, T. Norimatsu, ChemPhysChem 5, 716 (2004)Google Scholar
  182. 182.
    T. Abe, K. Nagai, Sekimoto, A. Tajiri, T. Norimatsu, J. Electroanal. Chem. 583, 327 (2005)Google Scholar
  183. 183.
    T. Abe, K. Nagai, Sekimoto, A. Tajiri, T. Norimatsu, Electrochem. Commun. 7, 1129 (2005)Google Scholar
  184. 184.
    T. Abe, K. Nagai, T. Ogiwara, S. Ogasawara, M. Kaneko, A. Tajiri, T. Norimatsu, J. Electroanal. Chem. 587, 127 (2006)Google Scholar
  185. 185.
    T. Abe, K. Nagai, S. Kabutomori, M. Kaneko, A. Tajiri, T. Norimatsu, Angew. Chem. Int. Ed. 45, 2778 (2006)Google Scholar
  186. 186.
    T. Abe, K. Nagai, T. Matsukawa, A. Tajiri, T. Norimatsu, J. Solid State Electrochem. 11, 303 (2007)Google Scholar
  187. 187.
    T. Abe, K. Nagai, H. Ichinohe, T. Shibata, A. Tajiri, T. Norimatsu, J. Electroanal. Chem. 599, 65 (2007)Google Scholar
  188. 188.
    T. Abe, K. Nagai, Org. Electron. 8, 262 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • T. Okada
    • 1
  • T. Abe
    • 2
  • M. Kaneko
    • 3
  1. 1.Energy Technology Research InstituteNational Institute of Advanced Industrial Science and TechnologyIbarakiJapan
  2. 2.Department of Frontier, Materials Chemistry, Graduate School of Science and TechnologyHirosaki UniversityHirosakiJapan
  3. 3.The Institute of Biophotochemonics Co. Ltd.MitoJapan

Personalised recommendations