An Application for Electroencephalogram Mining for Epileptic Seizure Prediction

  • Bruno Direito
  • António Dourado
  • Francisco Sales
  • Marco Vieira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5077)

Abstract

A computational framework to support seizure predictions in epileptic patients is presented. It is based on mining and knowledge discovery in Electroencephalogram (EEG) signal. A set of features is extracted and classification techniques are then used to eventually derive an alarm signal predicting a coming seizure. The epileptic patient may then take steps in order to prevent accidents and social exposure.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods 134, 9–21 (2004)CrossRefGoogle Scholar
  2. 2.
  3. 3.
  4. 4.
    The MathWorks, Inc.Google Scholar
  5. 5.
    Esteller, R., Echauz, J., D’Alessandro, M., Worrell, G., et al.: Continuous energy variation during the seizure cycle: towards an on-line accumulated energy. Clinical Neurophysiology 116, 517–526 (2005)CrossRefGoogle Scholar
  6. 6.
    Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., et al.: Epileptic seizures begin hours in advance of clinical onset: a report of five patients. Neuron 30, 51–64 (2001)CrossRefGoogle Scholar
  7. 7.
    Wichard, J., Parlitz, U.: Applications of nearest neighbours statistics. In: International Symposium on Nonlinear Theory and Its Applications (NOLTA 1998) (1998)Google Scholar
  8. 8.
    Freiburger Zentrum fur Datenanalyse und mollbildung, http://www.fdm.uni-freiburg.de/groups/timeseries/epi/EEGData/download/infos.txt
  9. 9.
    Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., et al.: Epileptic seizures begin hours in advance of clinical onset: a report of five patients. Neuron 30, 51–64 (2001)CrossRefGoogle Scholar
  10. 10.
    Gigola, S., Ortiz, F., D’Atellis, C., Silva, W., Kochen, S.: Prediction of epileptic seizures using accumulated energy in a multiresolution framework. Journal of Neuroscience Methods 138, 107–111 (2004)CrossRefGoogle Scholar
  11. 11.
    Jirsch, J.D., Urrestarazu, E., LeVan, P., Olivier, A., Dubeau, F., Gotman, J.: High-frequency oscillations during human focal seizures. Brain129 (Pt 6), 593–608 (June 2006)Google Scholar
  12. 12.
    Winterhalder, M., Schelter, B., Maiwald, T., Brandt, A., Schad, A., Schulze-Bonhage, A., Timmer, J.: Spatio-temporal patient–individual assessment of synchronization changes for epileptic seizure prediction. Clinical Neurophysiology 117, 2399–2413 (2006)CrossRefGoogle Scholar
  13. 13.
    Le van Quyen, M., Martinerie, J., Navarro, V., Boon, P., D’Have, M., Adam, C., et al.: Anticipation of epileptic seizures from standard EEG recordings. Lancet 357, 183–188 (2001b)CrossRefGoogle Scholar
  14. 14.
    Lehnertz, K., Andrzejak, R., Arnhold, J., Kreuz, T., Mormann, F., Rieke, C., et al.: Nonlinear EEG analysis in epilepsy: Its possible use for interictal focus localization, seizure anticipation, and prevention. J. Clin. Neurophysiol. 18, 209–222 (2001)CrossRefGoogle Scholar
  15. 15.
    Mormann, F., Kreuz, T., Rieke, C., Lehnertz, K., et al.: On the predictability of epileptic seizures. Clinical neurophysiology 116, 569–587 (2005)CrossRefGoogle Scholar
  16. 16.
    Dourado, A., Ferreira, E., Barbeiro, P.: VISRED - Numerical Data Mining with Linear and Nonlinear Techniques. In: Perner, P. (ed.) ICDM 2007. LNCS (LNAI), vol. 4597, pp. 92–106. Springer, Heidelberg (2007), http://eden.dei.uc.pt/~dourado CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bruno Direito
    • 1
  • António Dourado
    • 1
  • Francisco Sales
    • 2
  • Marco Vieira
    • 1
  1. 1.Department of Informatics EngineeringCentro de Informática e Sistemas da Universidade de CoimbraCoimbraPortugal
  2. 2.Hospitais da Universidade de CoimbraCoimbraPortugal

Personalised recommendations