Data Mining with Neural Networks for Wheat Yield Prediction

  • Georg Ruß
  • Rudolf Kruse
  • Martin Schneider
  • Peter Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5077)


Precision agriculture (PA) and information technology (IT) are closely interwoven. The former usually refers to the application of nowadays’ technology to agriculture. Due to the use of sensors and GPS technology, in today’s agriculture many data are collected. Making use of those data via IT often leads to dramatic improvements in efficiency. For this purpose, the challenge is to change these raw data into useful information. In this paper we deal with neural networks and their usage in mining these data. Our particular focus is whether neural networks can be used for predicting wheat yield from cheaply-available in-season data. Once this prediction is possible, the industrial application is quite straightforward: use data mining with neural networks for, e.g., optimizing fertilizer usage, in economic or environmental terms.


Precision Agriculture Data Mining Neural Networks Prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drummond, S., Joshi, A., Sudduth, K.A.: Application of neural networks: precision farming. In: The 1998 IEEE International Joint Conference on Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence, vol. 1, pp. 211–215 (1998)Google Scholar
  2. 2.
    Fausett, L.V.: Fundamentals of Neural Networks. Prentice Hall, Englewood Cliffs (1994)zbMATHGoogle Scholar
  3. 3.
    Hagan, M.T.: Neural Network Design (Electrical Engineering). Thomson Learning (December 1995)Google Scholar
  4. 4.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Englewood Cliffs (1998)Google Scholar
  5. 5.
    Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley, Reading (1990)Google Scholar
  6. 6.
    Heimlich, R.: Precision agriculture: information technology for improved resource use. Agricultural Outlook, 19–23 (April 1998)Google Scholar
  7. 7.
    Kitchen, N.R., Drummond, S.T., Lund, E.D., Sudduth, K.A., Buchleiter, G.W.: Soil Electrical Conductivity and Topography Related to Yield for Three Contrasting Soil-Crop Systems. Agron J. 95(3), 483–495 (2003)Google Scholar
  8. 8.
    Liu, J., Miller, J.R., Haboudane, D., Pattey, E.: Exploring the relationship between red edge parameters and crop variables for precision agriculture. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2004. IGARSS 2004, vol. 2, pp. 1276–1279 (2004)Google Scholar
  9. 9.
    MacKay, D.J.C.: Bayesian interpolation. Neural Computation 4(3), 415–447 (1992)CrossRefGoogle Scholar
  10. 10.
    Middleton, E.M., Campbell, P.K.E., Mcmurtrey, J.E., Corp, L.A., Butcher, L.M., Chappelle, E.W.: “Red edge” optical properties of corn leaves from different nitrogen regimes. In: IEEE International Geoscience and Remote Sensing Symposium, 2002. IGARSS 2002, vol. 4, pp. 2208–2210 (2002)Google Scholar
  11. 11.
    Schneider, M., Wagner, P.: Prerequisites for the adoption of new technologies - the example of precision agriculture. In: Agricultural Engineering for a Better World, Düsseldorf. VDI Verlag GmbH (2006)Google Scholar
  12. 12.
    Serele, C.Z., Gwyn, Q.H.J., Boisvert, J.B., Pattey, E., Mclaughlin, N., Daoust, G.: Corn yield prediction with artificial neural network trained using airborne remote sensing and topographic data. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2000. IGARSS 2000, vol. 1, pp. 384–386 (2000)Google Scholar
  13. 13.
    Sonka, S.T., Bauer, M.E., Cherry, E.T., John, Heimlich, R.E.: Precision Agriculture in the 21st Century: Geospatial and Information Technologies in Crop Management. National Academy Press, Washington (1997)Google Scholar
  14. 14.
    Wagner, P., Schneider, M.: Economic benefits of neural network-generated site-specific decision rules for nitrogen fertilization. In: Stafford, J.V. (ed.) Proceedings of the 6th European Conference on Precision Agriculture, pp. 775–782 (2007)Google Scholar
  15. 15.
    Weigert, G.: Data Mining und Wissensentdeckung im Precision Farming - Entwicklung von ökonomisch optimierten Entscheidungsregeln zur kleinräumigen Stickstoff-Ausbringung. PhD thesis, TU München (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Georg Ruß
    • 1
  • Rudolf Kruse
    • 1
  • Martin Schneider
    • 2
  • Peter Wagner
    • 2
  1. 1.Otto-von-Guericke-University of Magdeburg 
  2. 2.Martin-Luther-University of Halle 

Personalised recommendations