Generalized Graph Matching for Data Mining and Information Retrieval

  • Alexandra Brügger
  • Horst Bunke
  • Peter Dickinson
  • Kaspar Riesen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5077)

Abstract

Graph based data representation offers a convenient possibility to represent entities, their attributes, and their relationships to other entities. Consequently, the use of graph based representation for data mining has become a promising approach to extracting novel and useful knowledge from relational data. In order to check whether a certain graph occurs, as a substructure, within a larger database graph, the widely studied concept of subgraph isomorphism can be used. However, this conventional approach is rather limited. In the present paper the concept of subgraph isomorphism is substantially extended such that it can cope with don’t care symbols, variables, and constraints. Our novel approach leads to a powerful graph matching methodology which can be used for advanced graph based data mining.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Perner, P., Rosenfeld, A.: MLDM 2003. LNCS, vol. 2734. Springer, Heidelberg (2003)MATHCrossRefGoogle Scholar
  2. 2.
    Perner, P., Imiya, A. (eds.): MLDM 2005. LNCS (LNAI), vol. 3587. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Perner, P. (ed.): ICDM 2006. LNCS (LNAI), vol. 4065. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Perner, P. (ed.): MLDM 2007. LNCS (LNAI), vol. 4571. Springer, Heidelberg (2007)Google Scholar
  5. 5.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)CrossRefGoogle Scholar
  6. 6.
    Kandel, A., Bunke, H., Last, M. (eds.): Applied Graph Theory in Computer Vision and Pattern Recognition. Studies in Computational Intelligence, vol. 52. Springer, Heidelberg (2007)MATHGoogle Scholar
  7. 7.
    Cook, D., Holder, L. (eds.): Mining Graph Data. Wiley-Interscience, Chichester (2007)MATHGoogle Scholar
  8. 8.
    Blau, H., Immerman, N., Jensen, D.: A visual query language for relational knowledge discovery. Technical report, University of Massachusetts (2001)Google Scholar
  9. 9.
    Marcus, S., Moy, M., Coffman, T.: Social Network Analysis. In: Cook, D., Holder, L. (eds.) Mining Graph Data, pp. 443–467. Wiley-Interscience, Chichester (2007)Google Scholar
  10. 10.
    Ullman, J.: An algorithm for subgraph isomorphism. Journal of the Association for Computing Machinery 23(1), 31–42 (1976)MATHMathSciNetGoogle Scholar
  11. 11.
    Cordella, L., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. IEEE Trans. on Pattern Analysis and Machine Intelligence 26(20), 1367–1372 (2004)CrossRefGoogle Scholar
  12. 12.
    Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern matching. Mathematical Structures in Computer Science 12(4), 403–422 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Klimt, B., Yang, Y.: Introducing the Enron corpus. In: Proc. First Conference on Email and Anti-Spam, CEAS (Electronic Proceedings)(2004)Google Scholar
  14. 14.
    DTP, D.T.P.: Aids antiviral screen (2004), http://dtp.nci.nih.gov/docs/aids/aids_data.html
  15. 15.
    The Internet Movie Database, http://www.imdb.com
  16. 16.
    Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1, 245–253 (1983)CrossRefGoogle Scholar
  17. 17.
    Bunke, H., Dickinson, P., Kraetzl, M.: Theoretical and algorithmic framework for hypergraph matching. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 463–470. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexandra Brügger
    • 1
  • Horst Bunke
    • 1
  • Peter Dickinson
    • 2
  • Kaspar Riesen
    • 1
  1. 1.Institute of Computer Science and Applied MathematicsUniversity of BernBernSwitzerland
  2. 2.C3I DivisionDSTOEdinburghAustralia

Personalised recommendations