Advertisement

Abstract

An edge of a k-connected graph is said to be k-contractible if the contraction of the edge results in a k-connected graph. Some results concerning k-contractible edges in a k-connected graph are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ando, K.: Trivially Noncontractible Edges in a Contraction Critically 5-Connected Graph. Disc. Math. 293, 61–72 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ando, K.: A Local Structure Theorem of 5-Connected Graphs. PreprintGoogle Scholar
  3. 3.
    Ando, K., Egawa, Y.: Contractible Edges in a 4-Connected Graph with Vertices of Degree Greater than 4. PreprintGoogle Scholar
  4. 4.
    Ando, K., Egawa, Y.: Edges not Contained in Triangles and the Distribution of Contractible Edges in a 4-Connected Graph. PreprintGoogle Scholar
  5. 5.
    Ando, K., Enomoto, H., Saito, A.: Contractible Edges in 3-Connected Graphs. J. Combin. Theory Ser. B 42(1), 87–93 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ando, K., Kawarabayashi, K., Kaneko, A.: Contractible Edges in Minimally k-Connected Graphs. SUT J. Math. 36(1), 99–103 (2000)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Ando, K., Kaneko, A., Kawarabayashi, K.: Vertices of Degree 5 in a Contraction Critically 5-Connected Graphs. Graphs Combin. 21, 27–37 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Ando, K., Kaneko, A., Kawarabayashi, K.: Vertices of Degree 6 in a Contraction Critically 6-Connected Graph. Discrete Math. 273, 55–69 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ando, K., Kaneko A., Kawarabayashi, K.: Vertices of Degree 7 in a Contraction Critically 7-Connected Graph. PreprintGoogle Scholar
  10. 10.
    Ando, K., Kaneko, A., Kawarabayashi, K.: Some Sufficient Conditions for a k-Connected Graph to Have a k-Contractible Edge. PreprintGoogle Scholar
  11. 11.
    Ando, K., Kaneko, A., Kawarabayashi, K., Yoshimoto, K.: Contractible Edges and Bowties in a k-Connected Graph. Ars. Combin. 64, 239–247 (2002)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Ando, K., Kawarabayashi, K.: Some Forbidden Subgraph Conditions for a Graph to Have a k-Contractible Edge. Discrete Math. 267, 3–11 (2003)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Egawa, Y.: Contractible Edges in n-Connected Graphs with Minimum Degree Greater than or Equal to \([\frac{5n}{4}]\). Graphs Combin. 7, 15–21 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Egawa, Y., Enomoto, H., Saito, A.: Contractible Edges in Triangle-Free Graphs. Combinatorica 6, 269–274 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fontet, M.: Graphes 4-Essentiels. C. R. Acad. Sci. Paris 287, 289–290 (1978)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Kawarabayashi, K.: Note on k-Contractible Edges in k-Connected Graphs. Australas. J. Combin. Combin. 24, 165–168 (2001)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Kriesell, M.: A Degree Sum Condition for the Existence of a Contractible Edge in a k-Connected Graph. J. Combin. Theory Ser. B 82(1), 81–101 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kriesell, M.: Contractible Subgraphs in 3-Connected graphs. J. Combin. Theory Ser. B 80(1), 32–48 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Mader, W.: Disjunkte Fragmente in kritisch n-Fach Zusammenhängende Graphen. European J. Combin. 6, 353–359 (1985)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Mader, W.: Generalizations of Critical Connectivity of Graphs. Discrete Math. 72, 267–283 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Martinov, N.: Uncontractible 4-Connected Graphs. J. Graph Theory 6, 343–344 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    McCuaig, W.: Edge Contractions in 3-Connected Graphs. Ars. Combin. 29, 299–308 (1990)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Li, X., Yuan, X.: private communicationGoogle Scholar
  24. 24.
    Li, M., Yuan, X., Su, J.: Vertex of Degree 7 in a Contraction Critical 7-Connected Graph. PreprintGoogle Scholar
  25. 25.
    Ota, K.: The Number of Contractible Edges in 3-Connected Graphs. Graphs Combin. 4(4), 333–354 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Qin, C., Yuan, X., Su, J.: Some Properties of Contraction-critical 5-Connected Graphs. PreprintGoogle Scholar
  27. 27.
    Thomassen, C.: Non-Separating Cycles in k-Connected Graphs. J. Graph Theory 5, 351–354 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Tutte, W.T.: A Theory of 3-Connected Graphs. Indag. Math. 23, 441–455 (1961)MathSciNetGoogle Scholar
  29. 29.
    Wu, H.: Contractible Elements in Graphs and Matroids. Combin. Probab. Comput. 12(4), 457–465 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Zhao, Q., Qin, C., Yuan, X., Li, M.: Vertices of Degree 6 in a Contraction-Critical 6 Connected Graph. Journal of Guangxin Normal University 25(2), 38–43 (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Kiyoshi Ando
    • 1
  1. 1.The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu City, Tokyo, 182-8585Japan

Personalised recommendations