Computation of Permeability of Textile with Experimental Validation for Monofilament and Non Crimp Fabrics

  • B. Verleye
  • Margrit Klitz
  • Roberto Croce
  • D. Roose
  • S. V. Lomov
  • I. Verpoest
Part of the Studies in Computational Intelligence book series (SCI, volume 55)


Lattice Boltzmann Method Composite Part Lattice Boltzmann Model Brinkman Equation Single Layer Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angot P (1999) Analysis of singular perturbations on the brinkman problem for fictious domain models of viscous flow. Mathematical methods in the applied sciences, 22:1395-1412zbMATHCrossRefMathSciNetGoogle Scholar
  2. Angot P, Bruneau C, Fabrie P (1999) A penalization method to take into account obstacles in incompressible viscous flows. Numerische Mathematik, 81:497-520zbMATHCrossRefMathSciNetGoogle Scholar
  3. Bell J, Colella P, Glaz H (1989) A second-order projection method for the incompressible navier-stokes equations. Journal of Computational Physics, 85:257-283zbMATHCrossRefMathSciNetGoogle Scholar
  4. Belov E, Lomov S, Verpoest I, Peeters T, Roose D (2004) Modelling of permeability of textile reinforcements:lattice boltzmann method. Composites Science and Technology pp 1069-1080Google Scholar
  5. Berdichevski A, Cai Z (1993) Preform permeability predictions by selfcon-sistent method and finite element simulation. Polymer Composites, 14(2):132-43CrossRefGoogle Scholar
  6. Briggs W, Emden HV, McCormick S (2000) A Multigrid Tutorial, Second edition. SIAM, PhiladelphiazbMATHGoogle Scholar
  7. Brown D, Cortez R, Minion M (2001) Accurate projection methods for the incompressible navier-stokes equations. Journal of Computational Physics, 186:464-499CrossRefMathSciNetGoogle Scholar
  8. Desplentere F, Lomov S, Verpoest I (2004) Influence of the scatter of perform permeability on the mould filling:Numerical simulations. In:Proceedings of the 25th International SAMPE Europe Conference, Paris, pp 331-336Google Scholar
  9. Desplentere F, Lomov S, Woerdeman D, Verpoest I, Wevers M, Bogdanovich A (2005) Micro-ct characterization of variability in 3d textile architecture. Composites part A, 65:1920-1930Google Scholar
  10. Gebart B (1992) Permeability of unidirectional reinforcements for rtm. Journal of Composite Materials, 26(8):1100-33CrossRefGoogle Scholar
  11. Griebel M, Dornseifer T, Neunhoeffer T (1998) Numerical Simulation in Fluid Dynamics, a Practical Introduction. SIAM, PhiladelphiaGoogle Scholar
  12. Hoes K (2003) Development of a new sensor-based setup for experimental permeability identification of fibrous media. PhD thesis, Vrije Universiteit BrusselGoogle Scholar
  13. Hoes K, Dinesku D, Vanhuele M, Sol H, Parnas R, Belov E, Lomov S (2001) Statistical distribution of permeability values of different porous materials. In:Sol H, Degrieck J (eds) 10th European Conference on Composite Materials (ECCM-10)Google Scholar
  14. Lomov S, Gusakov A, Huysmansa G, Prodromou A, Verpoest I (2000) Textile geometry preprocessor for meso-mechanical models of woven composites. Composites Science and Technology, 60:2083-2095 CrossRefGoogle Scholar
  15. Lomov S, Huysmans G, Luo Y, Parnas R, Prodromou A, Verpoest I, Phelan F (2001) Textile composites models:Integrating strategies. Composites part A, 32(10):1379-1394CrossRefGoogle Scholar
  16. Lomov S, Belov E, Bischoff T, Ghosh S, Chi TT, Verpoest I (2002a) Carbon composites based on multiaxial multiply stitched preforms. part 1:Geometry of the preform. Composites part A, 33(9):1171-1183CrossRefGoogle Scholar
  17. Lomov S, Nakai A, Parnas R, Ghosh SB, Verpoest I (2002b) Experimental and theoretical characterisation of the geometry of flat two-and three-axial braids. Textile Research Journal, 72(8):706-712CrossRefGoogle Scholar
  18. Lomov S, Verpoest I, Peeters T, Roose D, Zako M (2002c) Nesting in textile laminates:geometrical modelling of the laminate. Composites Science and TechnologyGoogle Scholar
  19. Lomov S, Chi TT, Verpoest I, Peeters T, Roose D, Boisse P, Gasser A (2003) Mathematical modelling of internal geometry and deformability of woven preforms. International Journal of Forming Processes, 6(3-4):413-442CrossRefGoogle Scholar
  20. Moesen M, Lomov S, Verpoest I (2003) Modelling of the geometry of weft-knit fabrics. In:TechTextil Symposium, Frankfurt, pp CD-Edition MPI (1994)
  21. Phelan F, Wise G (1996) Analysis of transverse flow in aligned fibrous porous media. Composites part A, 27A:25-34CrossRefGoogle Scholar
  22. Simacek P, Advani S (2004) Desirable features in mold filling simulations for liquid composite molding processes. Polymer Composites, 25(4):355-367CrossRefGoogle Scholar
  23. Slattery J (1972) Momentum, energy and mass transfer in continua. McGraw-Hill, New YorkGoogle Scholar
  24. Spaid M, Phelan F (1997) Lattice boltzmann method for modeling microscale flow in fibrous porous media. Physics of fluids, 9(9):2468-74zbMATHCrossRefMathSciNetGoogle Scholar
  25. Trochu F, Ruiz E, Achim V, Soukane S (2006) Advanced numerical simulation of liquid composite molding for process analysis and optimization. Composites Part A-Applied Science and Manufacturing, 37(6):890-902CrossRefGoogle Scholar
  26. Varonos A, Bergeles G (1998) Development and assessment of a variableorder non-oscillatory scheme for convection term discretization. Int J Numer Methods Fluids, 26:1-16zbMATHCrossRefMathSciNetGoogle Scholar
  27. Verleye B, Klitz M, Croce R, Griebel M, Lomov S, Roose D, Verpoest I (2006) Predicting the permeability of textile reinforcements via a hybrid navier-stokes/brinkman solver. In:8th International conference on flow processes in composite materials, Douai, FranceGoogle Scholar
  28. Verpoest I, Lomov S (2005) Virtual textile composites software wisetex:integration with micro-mechanical, permeability and structural analysis. Composites Science and Technology, 65(15-16):2563-2574CrossRefGoogle Scholar
  29. van der Vorst H (1992) Bi-cgstab:A fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput, 13:631-344zbMATHCrossRefGoogle Scholar
  30. Westhuizen J, Plessis JD (1994) Quantification of unidirectional fiber bed permeability. Journal of Composite Materials, 28(7):38-44Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • B. Verleye
  • Margrit Klitz
  • Roberto Croce
  • D. Roose
  • S. V. Lomov
  • I. Verpoest

There are no affiliations available

Personalised recommendations