Advertisement

Network Organisation of Mycelial Fungi

  • M. Fricker
  • L. Boddy
  • D. Bebber
Part of the The Mycota book series (MYCOTA, volume 8)

Abstract

Foraging saprotrophic woodland fungi form extensive interconnected mycelial networks that scavenge for scarce resources in a heterogeneous environment. The network architecture continuously adapts to local nutritional or environmental cues, damage or predation, through a combination of growth, branching, fusion or regression. Despite the uniqueness of this pattern of growth and development amongst eukaryotes, there has been relatively little explicit analysis of the structure of the networks formed, their dynamic behaviour and how both impact on their proposed functions. Recently, considerable advances have been made in network analysis using concepts and tools emerging from graph theory and statistical mechanics. These techniques may provide a useful conceptual framework for quantitative analysis of fungal mycelia. In this Chapter, we provide an introduction to some of the theory and terminology used to analyse networks, suitably translated into a mycological context. We then evaluate the utility of standard network measures to describe the dynamics, efficiency, resilience, and adaptation of these mycelial networks at different spatial scales. We also try to set network analysis in context with other approaches to measure and model fungal behaviour, with the expectation that a combination of approaches will be required to understand fungal growth over the enormous range of length scales needed.

Keywords

Betweenness Centrality Fungal Mycelium Network Organisation Theor Biol Cellular Automaton Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97CrossRefGoogle Scholar
  2. Alon N, Yuster R, Zwick U (1997) Finding and counting given length cycles. Algorithmica 17:209–223CrossRefGoogle Scholar
  3. Amaral LAN, Ottino JM (2004) Complex networks — augmenting the framework for the study of complex systems. Eur Phys J B 38:147–162CrossRefGoogle Scholar
  4. Ashford AE (1998) Dynamic pleiomorphic vacuole systems: are they endosomes and transport compartments in fungal hyphae? Adv Bot Res 28:119–159Google Scholar
  5. Ashford AE, Allaway WG (2002) The role of the motile tubular vacuole system in mycorrhizal fungi. Plant Soil 244:177–187CrossRefGoogle Scholar
  6. Ashton DJ, Jarrett TC, Johnson NF (2005) Effect of congestion costs on shortest paths through complex networks. Phys Rev Lett 94:1–4CrossRefGoogle Scholar
  7. Atkinson HA, Daniels A, Read ND (2002) Live-cell imaging of endocytosis during conidial germination in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 37:233–244PubMedCrossRefGoogle Scholar
  8. Bago B, Pfeffer P, Shachar-Hill Y (2001) Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytol 149:4–8CrossRefGoogle Scholar
  9. Ball MO, Provan JS (1983) Calculating bounds on reachability and connectedness in stochastic networks. Networks 13:253–278CrossRefGoogle Scholar
  10. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512PubMedCrossRefGoogle Scholar
  11. Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The architecture of complex weighted networks. Proc Natl Acad Sci USA 101:3747–3752PubMedCrossRefGoogle Scholar
  12. Barrat A, Barthelemy M, Vespignani A (2005) The effects of spatial constraints on the evolution of weighted complex networks. J Stat Mech 5:49–68Google Scholar
  13. Barthelemy M, Barrat A, Pastor-Satorras R, Vespignani A (2005) Characterization and modeling of weighted networks. Physica A 346:34–43CrossRefGoogle Scholar
  14. Bartnicki-Garcia S, Hergert F, Gierz G (1989) Computer-simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth. Protoplasma 153:46–57CrossRefGoogle Scholar
  15. Bezzi M, Ciliberto A (2004) Mathematical modelling of filamentous microorganisms. http://arxivorg/abs/qbio/0402004Google Scholar
  16. Boddy L (1993) Saprotrophic cord-forming fungi — warfare strategies and other ecological aspects. Mycol Res 97:641–655Google Scholar
  17. Boddy L (1999) Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia 91:13–32CrossRefGoogle Scholar
  18. Boddy L, Donnelly DP (2006) Fractal geometry and microorganisms in the environment. In: Senesi N, Wilkinson K (eds) Fractal structures and processes in the environment. IUPAC, LondonGoogle Scholar
  19. Boddy L, Wells JM, Culshaw C, Donnelly DP (1999) Fractal analysis in studies of mycelium in soil. Geoderma 88:301–328CrossRefGoogle Scholar
  20. Boswell GP, Jacobs H, Davidson FA, Gadd GM, Ritz K (2002) Functional consequences of nutrient translocation in mycelial fungi. J Theor Biol 217:459–477PubMedCrossRefGoogle Scholar
  21. Boswell GP, Jacobs H, Davidson FA, Gadd GM, Ritz K (2003a) Growth and function of fungal mycelia in heterogeneous environments. Bull Math Biol 65:447–477PubMedCrossRefGoogle Scholar
  22. Boswell GP, Jacobs H, Davidson FA, Gadd GM, Ritz K (2003b) A positive numerical scheme for amixed-type partial differential equation model for fungal growth. Appl Math Comp 138:321–340CrossRefGoogle Scholar
  23. Boswell GP, Jacobs H, Ritz K, Gadd GM, Davidson FA (2006) The development of fungal networks in complex environments. Bull Math Biol. DOI 10.1007/s11538-005-9056-6Google Scholar
  24. Brandizzi F, Fricker M, Hawes C (2002) A greener world: the revolution in plant bioimaging. Nature Rev Mol Cell Biol 3:520–530CrossRefGoogle Scholar
  25. Brownlee C, Jennings DH (1982) Long-distance translocation in Serpula lacrimans — velocity estimates and the continuous monitoring of induced perturbations. Trans Br Mycol Soc 79:143–148Google Scholar
  26. Buhl J, Gautrais J, Sole RV, Kuntz P, Valverde S, Deneubourg JL, Theraulaz G (2004) Efficiency and robustness in ant networks of galleries. Eur Phys J B 42:123–129CrossRefGoogle Scholar
  27. Buller AHR (1931) Researches on fungi, vol 4. Longmans Green, LondonGoogle Scholar
  28. Buller AHR (1933) Researches on fungi, vol 5. Longmans Green, LondonGoogle Scholar
  29. Cairney JWG (2005) Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycol Res 109:7–20PubMedCrossRefGoogle Scholar
  30. Caldarelli G, Pastor-Satorras R, Vespignani A (2004) Structure of cycles and local ordering in complex networks. Eur Phys J B 38:183–186CrossRefGoogle Scholar
  31. Cardillo A, Scellato S, Latora V, Porta S (2006) Structural properties of planar graphs of urban street patterns. Phys Rev E 73:066107CrossRefGoogle Scholar
  32. Clipson NJW, Cairney JWG, Jennings DH (1987) The physiology of basidiomycete linear organs. 1. Phosphateuptake by cords and mycelium in the laboratory and the field. New Phytol 105:449–457CrossRefGoogle Scholar
  33. Cole L, Hyde GJ, Ashford AE (1997) Uptake and compartmentalization of fluorescent probes by Pisolithus tinctorius hyphae: evidence for an anion transport mechanism at the tonoplast but not for fluid-phase endocytosis. Protoplasma 199:18–29CrossRefGoogle Scholar
  34. Cole L, Orlovich DA, Ashford AE (1998) Structure, function, and, motility of vacuoles in filamentous fungi. Fungal Genet Biol 24:86–100PubMedCrossRefGoogle Scholar
  35. Crawford JW, Ritz K, Young IM (1993) Quantification of fungal morphology, gaseous transport and microbial dynamics in soil — an integrated framework utilizing fractal geometry. Geoderma 56:157–172CrossRefGoogle Scholar
  36. Crawford JW, Pachepsky YA, Rawls WJ (1999) Integrating processes in soils using fractal models. Geoderma 88:103–107CrossRefGoogle Scholar
  37. Czymmek KJ, Bourett TM, Shao Y, DeZwaan TM, Sweigard JA, Howard RJ (2005) Live-cell imaging of tubulin in the filamentous fungus Magnaporthe grisea treated with anti-microtubule and anti-microfilament agents. Protoplasma 225:23–32PubMedCrossRefGoogle Scholar
  38. Darrah PR, Tlalka M, Ashford A, Watkinson SC, Fricker MD (2006) The vacuole system is a significant intracellular pathway for longitudinal solute transport in basidiomycete fungi. Eukaryot Cell 5:1111–1125PubMedCrossRefGoogle Scholar
  39. Davidson FA (1998) Modelling the qualitative response of fungal mycelia to heterogeneous environments. J Theor Biol 195:281–292PubMedCrossRefGoogle Scholar
  40. Davidson FA, Olsson S (2000) Translocation induced outgrowth of fungi in nutrient-free environments. J Theor Biol 205:73–84PubMedCrossRefGoogle Scholar
  41. Davidson FA, Park AW (1998) A mathematical model for fungal development in heterogeneous environments. Appl Math Lett 11:51–56CrossRefGoogle Scholar
  42. Davidson FA, Sleeman BD, Rayner ADM, Crawford JW, Ritz K (1996) Context-dependent macroscopic patterns in growing and interacting mycelial networks. Proc R Soc Lond Ser B 263:873–880CrossRefGoogle Scholar
  43. Davidson FA, Sleeman BD, Rayner ADM, Crawford JW, Ritz K (1997) Travelling waves and pattern formation in a model for fungal development. J Math Biol 35:589–608CrossRefGoogle Scholar
  44. Donnelly DP, Wilkins MF, Boddy L (1995) An integrated image-analysis approach for determining biomass, radial extent and box-count fractal dimension of macroscopic mycelial systems. Binary 7:19–28Google Scholar
  45. Dormann D, Vasiev B, Weijer CJ (2002) Becoming multicellular by aggregation; The morphogenesis of the social amoebae Dicyostelium discoideum. J Biol Phys 28:765–780CrossRefGoogle Scholar
  46. Dorogovtsev SN, Mendes JFF (2002) Evolution of networks. Adv Phys 51:1079–1187CrossRefGoogle Scholar
  47. Edelstein L (1982) The propagation of fungal colonies — a model for tissue-growth. J Theor Biol 98:679–701CrossRefGoogle Scholar
  48. Edelstein L, Segel LA (1983) Growth and metabolism in mycelial fungi. J Theor Biol 104:187–210CrossRefGoogle Scholar
  49. Edelstein L, Hadar Y, Chet I, Henis Y, Segel LA (1983) Amodel for fungal colony growth applied to Sclerotium rolfsii. J Gen Microbiol 129:1873–1881Google Scholar
  50. Edelstein-Keshet L, Ermentrout B (1989) Models for branching networks in 2 dimensions. SIAM J Appl Math 49:1136–1157CrossRefGoogle Scholar
  51. Ermentrout GB, Edelstein-Keshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160:97–133PubMedCrossRefGoogle Scholar
  52. Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183CrossRefGoogle Scholar
  53. Fischer R (1999) Nuclear movement in filamentous fungi. FEMS Microbiol Rev 23:39–68PubMedCrossRefGoogle Scholar
  54. Fischer-Parton S, Parton RM, Hickey PC, Dijksterhuis J, Atkinson HA, Read ND (2000) Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. JMicrosc 198:246–259CrossRefGoogle Scholar
  55. Fleissner A, Sarkar S, Jacobson DJ, Roca MG, Read ND, Glass NL (2005) The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot Cell 4:920–930PubMedCrossRefGoogle Scholar
  56. Freeman LC (1977) Set of measures of centrality based on betweenness. Sociometry 40:35–41CrossRefGoogle Scholar
  57. Fricker M, Runions J, Moore I (2006) Quantitative fluorescence microscopy: from art to science. Annu Rev Plant Biol 57:79–107PubMedCrossRefGoogle Scholar
  58. Geitmann A (2006) Plant and fungal cytomechanics: quantifying and modeling cellular architecture. Can J Bot 84:581–593CrossRefGoogle Scholar
  59. Gerisch G (1987) Cyclic-AMP and other signals controlling cell-development and differentiation in Dictyostelium. Annu Rev Biochem 56:853–879PubMedCrossRefGoogle Scholar
  60. Gierz G, Bartnicki-Garcia S (2001) A three-dimensional model of fungal morphogenesis based on the vesicle supply center concept. J Theor Biol 208:151–164PubMedCrossRefGoogle Scholar
  61. Glass NL, Jacobson DJ, Shiu PKT (2000) The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu Rev Genet 34:165–186PubMedCrossRefGoogle Scholar
  62. Glass NL, Rasmussen C, Roca MG, Read ND (2004) Hyphal homing, fusion and mycelial interconnectedness. Trends Microbiol 12:135–141PubMedCrossRefGoogle Scholar
  63. Gol’dshtein V, Koganov GA, Surdutovich GI (2004) Vulnerability and hierarchy of complex networks. http://arXivorg/abs/cond-mat/0409298Google Scholar
  64. Granlund HI, Jennings DH, Thompson W (1985) Translocation of solutes along rhizomorphs of Armillariamellea. Trans Br Mycol Soc 84:111–119Google Scholar
  65. Gray SN, Dighton J, Olsson S, Jennings DH (1995) Realtime measurement of uptake and translocation of Cs-137 within mycelium of Schizophyllum commune Fr by autoradiography followed by quantitative image-analysis. New Phytol 129:449–465CrossRefGoogle Scholar
  66. Gregory PH (1984) The fungal mycelium: an historical perspective. Trans Br Mycol Soc 82:1–11CrossRefGoogle Scholar
  67. Haggett P, Chorley RJ (1969) Network analysis in geography. Arnold, LondonGoogle Scholar
  68. Hankin RKS (2006) The resistor array package. http://wwwcranr-projectorgGoogle Scholar
  69. Harold S, Tordoff GM, Jones TH, Boddy L (2005) Mycelial responses of Hypholoma fasciculare to collembola grazing: effect of inoculum age, nutrient status and resource quality. Mycol Res 109:927–935PubMedCrossRefGoogle Scholar
  70. Harris SD, Kwang WJ (2006) Cell polarity in filamentous fungi: shaping the mold. Int Rev Cytol 251:41–77PubMedGoogle Scholar
  71. Hickey PC, Jacobson DJ, Read ND, Glass NL (2002) Livecell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genet Biol 37:109–119PubMedCrossRefGoogle Scholar
  72. Hickey PC, Swift SR, Roca MG, Read ND (2005) Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. Methods Microbiol 34:63–87CrossRefGoogle Scholar
  73. Hoffmann J, Mendgen K (1998) Endocytosis and membrane turnover in the germ tube of Uromyces fabae. Fungal Genet Biol 24:77–85PubMedCrossRefGoogle Scholar
  74. Hutchinson SA, Sharma P, Clarke KR, Macdonald I (1980) Control of hyphal orientation in colonies of Mucor hiemalis. Trans Br Mycol Soc 75:177–191CrossRefGoogle Scholar
  75. Isaaks EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, New YorkGoogle Scholar
  76. Jacobs H, Boswell GP, Scrimgeour CM, Davidson FA, Gadd GM, Ritz K (2004) Translocation of carbon by Rhizoctonia solani in nutritionally-heterogeneous microcosms. Mycol Res 108:453–462PubMedCrossRefGoogle Scholar
  77. Jarrett TC, Ashton DJ, Fricker M, Johnson NF (2006) Interplay between function and structure in complex networks. Phys Rev D 74:026116Google Scholar
  78. Jennings DH (1987) Translocation of solutes in fungi. Biol Rev 62:215–243Google Scholar
  79. Kim KW, Roon RJ (1982) Transport and metabolic effects of alpha-aminoisobutyric-acid in Saccharomyces cerevisiae. Biochim Biophys Acta 719:356–362PubMedGoogle Scholar
  80. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701PubMedCrossRefGoogle Scholar
  81. Latora V, Marchiori M (2003) Economic small-world behavior in weighted networks. Eur Phys J B 32: 249–263CrossRefGoogle Scholar
  82. Leake JR, Johnson D, Donnelly DP, Muckle GE, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045CrossRefGoogle Scholar
  83. Lejeune R, Baron GV (1995) On the use of morphological measurements for the quantification of fungal growth. Biotechnol Tech 9:327–328CrossRefGoogle Scholar
  84. Lejeune R, Baron GV (1997) Simulation of growth of a filamentous fungus in 3 dimensions. Biotechnol Bioeng 53:139–150CrossRefPubMedGoogle Scholar
  85. Lejeune R, Baron GV (1998) Modeling the exponential growth of filamentous fungi during batch cultivation. Biotechnol Bioeng 60:169–179PubMedCrossRefGoogle Scholar
  86. Lejeune R, Nielsen J, Baron GV (1995) Morphology of Trichoderma reesei QM-9414 in submerged cultures. Biotechnol Bioeng 47:609–615CrossRefPubMedGoogle Scholar
  87. Liddell CM, Hansen D (1993) Visualizing complex biological interactions in the soil ecosystem. J Vis Comp Anim 4:3–12CrossRefGoogle Scholar
  88. Lilly WW, Higgins SM, Wallweber GJ (1990) Uptake and translocation of 2-aminoisobutyric acid by Schizophyllum commune. Exp Mycol 14:169–177CrossRefGoogle Scholar
  89. Lindahl B, Finlay R, Olsson S (2001) Simultaneous, bidirectional translocation of 32P and 33P between wood blocks connected by mycelial cords of Hypholoma fasciculare. New Phytol 150:189–194CrossRefGoogle Scholar
  90. Lindenmayer A (1968) Mathematical models for cellular interaction in development, parts I and II. J Theor Biol 18:280–315PubMedCrossRefGoogle Scholar
  91. Lopez JM, Jensen HJ (2002) Generic model of morphological changes in growing colonies of fungi. Phys Rev E 65:021903CrossRefGoogle Scholar
  92. Maheshwari R (2005) Nuclear behavior in fungal hyphae. FEMS Microbiol Lett 249:7–14PubMedCrossRefGoogle Scholar
  93. Mešskauskas A, Fricker MD, Moore D (2004a) Simulating colonial growth of fungi with the Neighbour-Sensing model of hyphal growth. Mycol Res 108:1241–1256CrossRefGoogle Scholar
  94. Meškauskas A, McNulty LJ, Moore D (2004b) Concerted regulation of all hyphal tips generates fungal fruit body structures: experiments with computer visualizations produced by a new mathematical model of hyphal growth. Mycol Res 108:341–353PubMedCrossRefGoogle Scholar
  95. Mihail JD, Obert M, Bruhn JN, Taylor SJ (1995) Fractal geometry of diffuse mycelia and rhizomorphs of Armillaria species. Mycol Res 99:81–88Google Scholar
  96. Nakagaki T, Yamada H, Toth A (2000) Maze-solving by an amoeboid organism. Nature 407:470–470PubMedCrossRefGoogle Scholar
  97. Nakagaki T, Yamada H, Hara M (2004) Smart network solutions in an amoeboid organism. Biophys Chem 107:1–5PubMedCrossRefGoogle Scholar
  98. Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256CrossRefGoogle Scholar
  99. Nielsen JS, Joner EJ, Declerck S, Olsson S, Jakobsen I (2002) Phospho-imaging as a tool for visualization and noninvasive measurement of P transport dynamics in arbuscular mycorrhizas. New Phytol 154:809–819CrossRefGoogle Scholar
  100. Olsson S (1999) Nutrient translocation and electrical signalling in mycelia. In: Gow NAR, Robson GD, Gadd GM (eds) The fungal colony. Cambridge University Press, Cambridge, pp 25–48Google Scholar
  101. Olsson S (2001) Colonial growth of fungi. In: Howard RJ, Gow NAR (eds) The Mycota, vol VIII. Biology of the fungal cell. Springer, Berlin Heidelberg New York, pp 125–141Google Scholar
  102. Olsson S, Gray SN (1998) Patterns and dynamics of 32P-phosphate and labelled 2-aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia. FEMS Microbiol Ecol 26:109–120CrossRefGoogle Scholar
  103. Olsson S, Jennings DH (1991) Evidence for diffusion being the mechanism of translocation in the hyphae of 3 molds. Exp Mycol 15:302–309CrossRefGoogle Scholar
  104. Pringle A, Taylor JW (2002) The fitness of filamentous fungi. Trends Microbiol 10:474–481PubMedCrossRefGoogle Scholar
  105. Prosser JI (1995a) Kinetics of filamentous growth and branching. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 301–318Google Scholar
  106. Prosser JI (1995b) Mathematical modelling of fungal growth. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 319–336Google Scholar
  107. Prosser JI, Trinci APJ (1979) Model for hyphal growth and branching. J Gen Microbiol 111:153–164PubMedGoogle Scholar
  108. Prusinkiewicz P (2004) Modelling plant growth and development. Curr Opin Plant Biol 7:79–83PubMedCrossRefGoogle Scholar
  109. Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants. Springer, Berlin Heidelberg New YorkGoogle Scholar
  110. Prusinkiewicz P, Rolland-Lagan AG (2006) Modeling plant morphogenesis. Curr Opin Plant Biol 9:83–88PubMedCrossRefGoogle Scholar
  111. Rayner ADM (1991) The challenge of the individualistic mycelium. Mycologia 83:48–71CrossRefGoogle Scholar
  112. Rayner ADM, Griffith GS, Ainsworth AM (1994) Mycelial interconnectedness. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 21–40Google Scholar
  113. Rayner ADM, Watkins ZR, Beeching JR (1999) Self-integration — an emerging concept from the fungal mycelium. In: Gow NAR, Robson GD, Gadd GM (eds) The fungal colony. Cambridge University Press, Cambridge, pp 1–24Google Scholar
  114. Read D (1997) Mycorrhizal fungi — the ties that bind. Nature 388:517–518CrossRefGoogle Scholar
  115. Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems — a journey towards relevance? New Phytol 157:475–492CrossRefGoogle Scholar
  116. Read ND, Kalkman ER (2003) Does endocytosis occurr in fungal hyphae? Fungal Genet Biol 39:199–203PubMedCrossRefGoogle Scholar
  117. Regalado CM, Crawford JW, Ritz K, Sleeman BD (1996) The origins of spatial heterogeneity in vegetative mycelia: a reaction-diffusion model. Mycol Res 100:1473–1480CrossRefGoogle Scholar
  118. Ripley BD (2004) Spatial statistics. Wiley, New YorkGoogle Scholar
  119. Ritz K, Crawford J (1990) Quantification of the fractal nature of colonies of Trichoderma viride. Mycol Res 94:1138–1141Google Scholar
  120. Ritz K, Millar SM, Crawford JW (1996) Detailed visualisation of hyphal distribution in fungal mycelia growing in heterogeneous nutritional environments. J Microbiol Methods 25:23–28CrossRefGoogle Scholar
  121. Roca MG, Davide LC, Mendes-Costa MC, Wheals A (2003) Conidial anastomosis tubes in Colletotrichum. Fungal Genet Biol 40:138–145PubMedCrossRefGoogle Scholar
  122. Roca MG, Davide LC, Davide LMC, Schwan RF, Wheals AE (2004) Conidial anastornosis fusion between Colletotrichum species. Mycol Res 108:1320–1326PubMedCrossRefGoogle Scholar
  123. Roca MG, Arlt J, Jeffree CE, Read ND (2005a) Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot Cell 4:911–919PubMedCrossRefGoogle Scholar
  124. Roca MG, Read ND, Wheals AE (2005b) Conidial anastomosis tubes in filamentous fungi. FEMS Microbiol Lett 249:191–198CrossRefGoogle Scholar
  125. Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82:1140–1165CrossRefGoogle Scholar
  126. Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582CrossRefGoogle Scholar
  127. Soddell F, Seviour R, Soddell J (1995) Using Lindenmayer systems to investigate how filamentous fungi may produce round colonies. Complexity Int 2Google Scholar
  128. Steinberg G (1998) Organelle transport and molecular motors in fungi. Fungal Genet Biol 24: 161–177PubMedCrossRefGoogle Scholar
  129. Steinberg G (2000) The cellular roles of molecular motors in fungi. Trends Microbiol 8:162–168PubMedCrossRefGoogle Scholar
  130. Steinberg G, Fuchs U (2004) The role of microtubules in cellular organization and endocytosis in the plant pathogen Ustilago maydis. J Microsc 214:114–123PubMedCrossRefGoogle Scholar
  131. Strogatz SH (2001) Exploring complex networks. Nature 410:268–276PubMedCrossRefGoogle Scholar
  132. Suelmann R, Fischer R (2000) Nuclear migration in fungi — different motors at work. Res Microbiol 151:247–254PubMedCrossRefGoogle Scholar
  133. Suelmann R, Sievers N, Fischer R (1997) Nuclear traffic in fungal hyphae: in vivo study of nuclear migration and positioning in Aspergillus nidulans. Mol Microbiol 25:757–769PubMedCrossRefGoogle Scholar
  134. Tero A, Kobayashi R, Nakagaki T (2006) Physarum solver: a biologically inspired method of road-network navigation. Physica A 363:115–119CrossRefGoogle Scholar
  135. Timonen S, Finlay RD, Olsson S, Soderstrom B (1996) Dynamics of phosphorus translocation in intact ectomycorrhizal systems: non-destructive monitoring using a beta-scanner. FEMS Microbiol Ecol 19:171–180Google Scholar
  136. Timonen S, Smith FA, Smith SE (2001) Microtubules of the mycorrhizal fungus Glomus intraradices in symbiosis with tomato roots. Can J Bot 79:307–313CrossRefGoogle Scholar
  137. Tindemans SH, Kern N, Mulder BM (2006) The diffusive vesicle supply center model for tip growth in fungal hyphae. J Theor Biol 238:937–948PubMedCrossRefGoogle Scholar
  138. Tlalka M, Watkinson SC, Darrah PR, Fricker MD (2002) Continuous imaging of amino-acid translocation in intact mycelia of Phanerochaete velutina reveals rapid, pulsatile fluxes. New Phytol 153:173–184CrossRefGoogle Scholar
  139. Tlalka M, Hensman D, Darrah PR, Watkinson SC, Fricker MD (2003) Noncircadian oscillations in amino acid transport have complementary profiles in assimilatory and foraging hyphae of Phanerochaete velutina. New Phytol 158:325–335CrossRefGoogle Scholar
  140. Torralba S, Heath IB (2002) Analysis of three separate probes suggests the absence of endocytosis in Neurospora crassa hyphae. Fungal Genet Biol 37:221–232PubMedCrossRefGoogle Scholar
  141. Trinci APJ, Wiebe MG, Robson GD (1994) The mycelium as an integrated entity. In: Wessels JGH, Meinhardt F (eds) Growth, differentiation and sexuality. Springer, Berlin Heidelberg New York, pp 175–193Google Scholar
  142. Tunbridge A, Jones H (1995) An L-Systems approach to the modeling of fungal growth. J Vis Comp Anim 6:91–107CrossRefGoogle Scholar
  143. Ueda T (2005) An intelligent slime mold: a self-organizing system of cell shape and information. In: Armbruster D, Kaneko K, Mikhailov AS (eds) Networks of interacting machines: production organisation in complex industrial systems and biological cells. World Scientific, Singapore, pp 1–35Google Scholar
  144. Watkinson SC (1984) Inhibition of growth and development of Serpula lacrimans by the non-metabolized amino-acid analog alpha-aminoisobutyric-acid. FEMS Microbiol Lett 24:247–250Google Scholar
  145. Watkinson SC, Bebber D, Darrah PR, Fricker MD, Tlalka M, Boddy L (2006) The role of wood decay fungi in the carbon and nitrogen dynamics of the forest floor. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 151–181Google Scholar
  146. Watts DJ, Strogatz SH (1998) Collective dynamics of’ smallworld’ networks. Nature 393:440–442PubMedCrossRefGoogle Scholar
  147. Wells JM, Boddy L, Evans R (1995) Carbon translocation in mycelial cord systems of Phanerochaete velutina (Dc, Pers) Parmasto. New Phytol 129:467–476CrossRefGoogle Scholar
  148. Wells JM, Harris MJ, Boddy L (1998) Temporary phosphorus partitioning in mycelial systems of the cord-forming basidiomycete Phanerochaete velutina. New Phytol 140:283–293CrossRefGoogle Scholar
  149. Wells JM, Harris MJ, Boddy L (1999) Dynamics of mycelial growth and phosphorus partitioning in developing mycelial cord systems of Phanerochaete velutina: dependence on carbon availability. New Phytol 142:325–334CrossRefGoogle Scholar
  150. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126PubMedCrossRefGoogle Scholar
  151. West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 413:628–631PubMedCrossRefGoogle Scholar
  152. Westermann B, Prokisch H (2002) Mitochondrial dynamics in filamentous fungi. Fungal Genet Biol 36:91–97PubMedCrossRefGoogle Scholar
  153. Xiang X, Plamann M (2003) Cytoskeleton and motor proteins in filamentous fungi. Curr Opin Microbiol 6:628–633PubMedCrossRefGoogle Scholar
  154. Yang H, King R, Reichl U, Gilles ED (1992a) Mathematical-model for apical growth, septation, and branching of mycelial microorganisms. Biotechnol Bioeng 39:49–58CrossRefPubMedGoogle Scholar
  155. Yang H, Reichl U, King R, Gilles ED (1992b) Measurement and simulation of the morphological development of filamentous microorganisms. Biotechnol Bioeng 39:44–48CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. Fricker
    • 1
  • L. Boddy
    • 2
  • D. Bebber
    • 1
  1. 1.Department of Plant SciencesUniversity of OxfordOxfordUK
  2. 2.Cardiff School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations