Complex Representation of DNA Sequences

  • Carlo Cattani
Part of the Communications in Computer and Information Science book series (CCIS, volume 13)

Abstract

This paper deals with the symbolic representation of a DNA sequence. As indicator it is taken a complex function. A DNA sequence is investigated by using a family of wavelets. The existence of a fractal shape, patterns and symmetries are eventually shown.

Keywords

Wavelets wavelet coefficients short Haar wavelet transfor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altaiski, M., Mornev, O., Polozov, R.: Wavelet analysis of DNA sequence. Genetic Analysis 12, 165–168 (1996)Google Scholar
  2. 2.
    Arneado, A., D’Aubenton-Carafa, Y., Audit, B., Bacry, E., Muzy, J.F., Thermes, C.: What can we learn with wavelets about DNA sequences? Physica A 249, 439–448 (1998)Google Scholar
  3. 3.
    Audit, B., Vaillant, C., Arneodo, A., d’Aubenton-Carafa, Y., Thermes, C.: Long range Correlations between DNA Bending Sites: Relation to the Structure and Dynamics of Nucleosomes. JMB, J. Mol. Biol. 316, 903–918 (2002)CrossRefGoogle Scholar
  4. 4.
    Berger, J.A., Mitra, S.K., Carli, M., Neri, A.: Visualization and analysis of DNA sequences using DNA walks. Journal of The Franklin Institutes 341, 37–53 (2004)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cattani, C.: Haar Wavelet based Technique for Sharp Jumps Classification. Mathematical Computer Modelling 39, 255–279 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cattani, C.: Haar wavelets based technique in evolution problems. Proc. Estonian Acad. of Sciences, Phys. Math. 53(1), 45–63 (2004)MATHMathSciNetGoogle Scholar
  7. 7.
    Cattani, C., Rushchitsky, J.J.: Wavelet and Wave Analysis as applied to Materials with Micro or Nanostructure. Series on Advances in Mathematics for Applied Sciences, p. 74. World Scientific, Singapore (2007)MATHGoogle Scholar
  8. 8.
    Cristea, P.D.: Large scale features in DNA genomic signals. Signal Processing 83, 871–888 (2003)CrossRefGoogle Scholar
  9. 9.
    Dodin, G., Vandergheynst, P., Levoir, P., Cordier, C., Marcourt, L.: Fourier and Wavelet Transform Analysis, a Tool for Visualizing Regular Patterns in DNA Sequences. J. Theor. Biol. 206, 323–326 (2000)CrossRefGoogle Scholar
  10. 10.
    Gee, H.: A journey into the genome: what’s there. Nature 12 (February 2001), http://www.nature.com/nsu/010215/010215-3.html
  11. 11.
    The Genome Data Base, http://gdbwww.gdb.org/, Genome Browser, http://genome.ucsc.edu, European Informatics Institute, http://www.ebl.ac.uk, Ensembl, http://www.ensembl.org
  12. 12.
    Herzel, H., Trifonov, E.N., Weiss, O., Groe, I.: Interpreting correlations in biosequences. Physica A 249, 449–459 (1998)Google Scholar
  13. 13.
    Li, W.: The study of correlation structures of DNA sequences: a critical review, vol. 21(4), pp. 257–271 (1997)Google Scholar
  14. 14.
    Murray, K.B., Gorse, D., Thornton, J.M.: Wavelet Transform for the characterization and detection of repeating motifs. JMB, J. Mol. Biol. 316, 341–363 (2002)CrossRefGoogle Scholar
  15. 15.
    Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  16. 16.
    Tsonis, A.A., Kumar, P., Elsner, J.B., Tsonis, P.A.: Wavelet Analysis of DNA sequences. Physical Review E 53, 1828–1834 (1996)CrossRefGoogle Scholar
  17. 17.
    Vaidyanathan, P.P., Yoon, B.-J.: The role of signal-processing concepts in genomics and proteomics. Journal of The Franklin Institute 341, 111–135 (2004)MATHCrossRefGoogle Scholar
  18. 18.
    Voss, R.F.: Evolution of Long-Range Fractal Correlations and 1/f Noise in DNA Base Sequences. Physical Review Letters 68(25), 3805–3808 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carlo Cattani
    • 1
  1. 1.diFarma, University of SalernoFisciano (SA)Italy

Personalised recommendations