A Computational Method for Reconstructing Gapless Metabolic Networks

  • Esa Pitkänen
  • Ari Rantanen
  • Juho Rousu
  • Esko Ukkonen
Part of the Communications in Computer and Information Science book series (CCIS, volume 13)

Abstract

We propose a computational method for reconstructing metabolic networks. The method utilizes optimization techniques and graph traversal algorithms to discover a set of biochemical reactions that is most likely catalyzed by the enzymatic genes of the target organism. Unlike most existing computational methods for metabolic reconstruction, our method generates networks that are structurally consistent, or in other terms, gapless. As many analyses of metabolic networks, like flux balance analysis, require gapless networks as inputs, our network offers a more realistic basis for metabolic modelling than the existing automated reconstruction methods. It is easy to incorporate existing information, like knowledge about experimentally discovered metabolic reactions or metabolites into the process. Thus, our method can be used to assist in the manual curation of metabolic network models as it is able to suggest good candidate reactions for filling gaps in the existing network models. However, it is not necessary to assume any prior knowledge on composition of complete biochemical pathways in the network. We argue that this makes the method well-suited to analysis of organisms that might differ considerably from previously known organisms. We demonstrate the viability of our method by analysing the metabolic network of the well-known organism Escherichia coli.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BMVis graph visualisation tool. Department of Computer Science, University of Helsinki, http://www.cs.helsinki.fi/group/biomine
  2. 2.
    Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402 (1997)CrossRefGoogle Scholar
  3. 3.
    Berkelaar, M., Eikland, K., Notebaert, P.: lp_solve: Open source (mixed-integer) linear programming system, Multi-platform, pure ANSI C / POSIX source code, Lex/Yacc based parsing. Version 5.1.0.0 dated 1 May 2004. GNU LGPL (Lesser General Public Licence) (2005), http://groups.yahoo.com/group/lp_solve
  4. 4.
    Blattner, F.R., Plunkett 3rd, G., Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B., Shao, Y.: The complete genome sequence of escherichia coli k-12. Science 277, 1453–1474 (1997)CrossRefGoogle Scholar
  5. 5.
    Burgard, A.P., Nikolaev, E.V., Schilling, C.H., Maranas, C.D.: Flux coupling analysis of genome-scale metabolic network reconstructions. Genome Research 14(2), 301–312 (2004)CrossRefGoogle Scholar
  6. 6.
    Caspi, R., Foerster, H., Fulcher, C.A., Hopkinson, R., Ingraham, J., Kaipa, P., Krummenacker, M., Paley, S., Pick, J., Rhee, S.Y., Tissier, C., Zhang, P., Karp, P.D.: Metacyc: A multiorganism database of metabolic pathways and enzymes. Nucleic Acids Research 516, D511–D516 (2006)CrossRefGoogle Scholar
  7. 7.
    Chen, L., Vitkup, D.: Predicting genes for orphan metabolic activities using phylogenetic profiles. Genome Biology 7(R17), 1777–1782 (2006)Google Scholar
  8. 8.
    The UniProt Consortium. The universal protein resource (uniprot). Nucleic Acids Research 35, D193–D197 (2007)Google Scholar
  9. 9.
    Cordwell, S.J.: Microbial genomes and ”missing” enzymes: redefining biochemical pathways. Arch Microbiol 172, 269–279 (1999)CrossRefGoogle Scholar
  10. 10.
    Csete, M., Doyle, J.: Bow ties, metabolism and disease. TRENDS in Biotechnology 22(9), 446–450 (2004)CrossRefGoogle Scholar
  11. 11.
    Duarte, N., Becker, S., Jamshidi, N., Thiele, I., Mo, M., Vo, T., Srivas, R., Palsson, B.: Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proceedings of National Academy of Science, USA 104(6), 1777–1782 (2007)CrossRefGoogle Scholar
  12. 12.
    Duarte, N., Herrgård, M., Palsson, B.: Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Research 14(7), 1298–1309 (2004)CrossRefGoogle Scholar
  13. 13.
    Edwards, J., Palsson, B.: The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proceedings of National Academy of Science, USA 97(10), 5528–5533 (2000)CrossRefGoogle Scholar
  14. 14.
    Riley, M., et al.: Escherichia coli k-12: a cooperatively developed annotation snapshot. Nucleic Acids Res. 34(1), 1–9 (2006)CrossRefGoogle Scholar
  15. 15.
    Caspi, R., et al.: The metacyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases. Nucleic Acids Research 36(Database issue), 623–631 (2008)Google Scholar
  16. 16.
    Förster, J., Famili, I., Fu, P., Palsson, B., Nielsen, J.: Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Research 13(2), 244–253 (2003)CrossRefGoogle Scholar
  17. 17.
    Francke, C., Siezen, R.J., Teusink, B.: Reconstructing the metabolic network of a bacterium from its genome. Trends Microbiol 13(11), 550–558 (2005)CrossRefGoogle Scholar
  18. 18.
    Galperin, M., Koonin, E.: Who’s your neighbor? new computational approaches for functional genomics. Nat. Biotechnol. 18, 609–613 (2000)CrossRefGoogle Scholar
  19. 19.
    Green, M., Karp, P.D.: A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 5(76) (2004)Google Scholar
  20. 20.
    Hatzimanikatis, V., Li, C., Ionita, J.A., Henry, C.S., Jankowski, M.D., Broadbelt, L.J.: Exploring the diversity of complex metabolic networks. Bioinformatics 21(8) (2005)Google Scholar
  21. 21.
    Herrgård, M., Fong, S., Palsson, B.: Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLoS Computational Biology 2(7), 72 (2006)CrossRefGoogle Scholar
  22. 22.
    IUBMB. Enzyme Nomenclature. Academic Press (1992)Google Scholar
  23. 23.
    Karp, P., Paley, S., Romero, P.: The pathway tools software. Bioinformatics 232, S225–S232 (2002)Google Scholar
  24. 24.
    Keseler, I.M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I.T., Peralta-Gil, M., Karp, P.D.: EcoCyc: A comprehensive database resource for Escherichia coli. Nucleic Acids Research 337, D334–D337 (2005)Google Scholar
  25. 25.
    Kharchenko, P., Chen, L., Freund, Y., Vitkup, D., Church, G.M.: Identifying metabolic enzymes with multiple types of association evidence. BMC Bioinformatics 7(177) (2006)Google Scholar
  26. 26.
    Kharchenko, P., Church, G.M., Vitkup, D.: Filling gaps in a metabolic network using expression information. Bioinformatics 185, I178–I185 (2004)CrossRefGoogle Scholar
  27. 27.
    Kim, P.-J., Lee, D.-Y., Kim, T., Lee, K., Jeong, H., Lee, S., Park, S.: Metabolite essentiality elucidates robustness of escherichia coli metabolism. Proceedings of National Academy of Science, USA 104(34), 13638–13642 (2007)CrossRefGoogle Scholar
  28. 28.
    Kumar, V., Dasika, M., Maranas, C.: Optimization based automated curation of metabolic reconstructions. BMC Bioinformatics 8(212), 13638–13642 (2007)Google Scholar
  29. 29.
    Marcotte, E.: Computational genetics: finding protein function by nonhomology methods. Curr. Opin. Struct. Biol. 10, 359–365 (2000)CrossRefMathSciNetGoogle Scholar
  30. 30.
    McGuire, A., Hughes, J., Church, G.: Conservation of DNA regulatory motifs and discovery of new motifs in microbial genomes. Genome Res. 10, 744–757 (2000)CrossRefGoogle Scholar
  31. 31.
    Osterman, A., Overbeek, R.: Missing genes in metabolic pathways: a comparative genomics approach. Current Opinion in Chemical Biology 7, 238–251 (2003)CrossRefGoogle Scholar
  32. 32.
    Pharkya, P., Maranas, C.D.: An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metabolic Engineering 8(1), 1–13 (2006)CrossRefGoogle Scholar
  33. 33.
    Pitkänen, E., Rantanen, A., Rousu, J., Ukkonen, E.: Finding feasible pathways in metabolic networks. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 123–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Resendis-Antonio, O., Reed, J., Encarnación, S., Collado-Vides, J., Palsson, B.: Metabolic reconstruction and modeling of nitrogen fixation in Rhizobium etli. PLoS Computational Biology 3(10), 13638–13642 (2007)CrossRefGoogle Scholar
  35. 35.
    Schilling, C.H., Letscher, D., Palsson, B.: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. Journal of Theoretical Biology 203(3), 228–248 (2003)Google Scholar
  36. 36.
    Schuster, S., Fell, D.A., Dandekar, T.: A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic network. Nature Biotechnology 18, 326–332 (2000)CrossRefGoogle Scholar
  37. 37.
    Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., Gilles, E.D.: Metabolic network structure determines key aspects of functionality and regulation. Nature 420, 190–193 (2002)CrossRefGoogle Scholar
  38. 38.
    van Rossum, G., Drake Jr., F.L.: An Introduction to Python. Network Theory Ltd. (2006)Google Scholar
  39. 39.
    Wolf, Y., Rogozin, I., Kondrashov, A., Koonin, E.: Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Res. 11, 356–372 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Esa Pitkänen
    • 1
  • Ari Rantanen
    • 2
  • Juho Rousu
    • 1
  • Esko Ukkonen
    • 1
  1. 1.Department of Computer ScienceUniversity of HelsinkiFinland
  2. 2.Institute of Molecular Systems BiologyETH ZürichSwitzerland

Personalised recommendations