E-BioFlow: Different Perspectives on Scientific Workflows

  • Ingo Wassink
  • Han Rauwerda
  • Paul van der Vet
  • Timo Breit
  • Anton Nijholt
Part of the Communications in Computer and Information Science book series (CCIS, volume 13)

Abstract

We introduce a new type of workflow design system called e-BioFlow and illustrate it by means of a simple sequence alignment workflow. E-BioFlow, intended to model advanced scientific workflows, enables the user to model a workflow from three different but strongly coupled perspectives: the control flow perspective, the data flow perspective, and the resource perspective. All three perspectives are of equal importance, but workflow designers from different domains prefer different perspectives as entry points for their design, and a single workflow designer may prefer different perspectives in different stages of workflow design. Each perspective provides its own type of information, visualisation and support for validation. Combining these three perspectives in a single application provides a new and flexible way of modelling workflows.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Georgakopoulos, D., Hornick, M., Sheth, A.: An overview of workflow management: From process modeling to workflow automation infrastructure. Distributed and Parallel Databases 3(2), 119–153 (1995)CrossRefGoogle Scholar
  2. 2.
    Santos, I., Valle, C., Raposo, A., Gattas, M.: A multimedia workflow-based collaborative engineering environment for oil & gas industry. In: Brown, J., Cai, Y. (eds.) Proceedings of the 2004 ACM SIGGRAPH, pp. 112–119. ACM, New York (2004)Google Scholar
  3. 3.
    Rowe, A., Kalaitzopoulos, D., Osmond, M., Ghanem, M., Guo, Y.: The discovery net system for high throughput bioinformatics. Bioinformatics 19(1), 225–231 (2003)CrossRefGoogle Scholar
  4. 4.
    Addis, M., Ferris, J., Greenwood, M., Li, P., Marvin, D., Oinn, T., Wipat, A.: Experiences with e-Science workflow specification and enactment in bioinformatics. In: Cox, S. (ed.) e-Science All Hands Meeting 2003, Nottingham, United Kingdom, pp. 459–466 (2004)Google Scholar
  5. 5.
    Majithia, S., Shields, M., Taylor, I., Wang, I.: Triana: A graphical web service composition and execution toolkit. In: Jain, H., Liu, L. (eds.) IEEE International Conference on Web Services (ICWS 2004), San Diego, California, USA, pp. 514–521. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  6. 6.
    Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)CrossRefGoogle Scholar
  7. 7.
    Macleod, R., Weinstein, D., de St. Germain, J., Brooks, D., Johnson, C., Parker, S.: SCIRun/BioPSE: Integrated Problem Solving Environment for Bioelectric Field Problems and Visualization. In: Proceedings of the International Symposium on Biomedical Imaging, Arlington, VA, USA, April 2004, pp. 640–643 (2004)Google Scholar
  8. 8.
    Ludäscher, B., Altintas, I., Berkley, C., Jones, M., Lee, E., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system. Concurrency and Computation: Practice and Experience 18(10), 1039–1065 (2006)CrossRefGoogle Scholar
  9. 9.
    Berthold, M., Cebron, N., Dill, F., Gabriel, T., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz information miner. In: Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007), Springer, Heidelberg (to appear, 2007)Google Scholar
  10. 10.
    Wainer, J., Weske, M., Gottfried, V., Bauzer Medeiros, C.: Scientific workflow systems. In: Proceedings of the NSF Workshop on Workflow and Process Automation in InformationSystems, Athens, Georgia, pp. 1–5 (1997)Google Scholar
  11. 11.
    Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., Cardoso, J.: IntelliGEN: A distributed workflow system for discovering protein-protein interactions. Distributed and Parallel Databases 13(1), 43–72 (2003)MATHCrossRefGoogle Scholar
  12. 12.
    Oinn, T., Greenwood, M., Addis, M., Alpdemir, M., Ferris, J., Glover, K., Goble, C., Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M., Senger, M., Stevens, R., Wipat, A., Wroe, C.: Taverna: Lessons in creating a workflow environment for the life sciences. Concurrency and Computation: Practice and Experience Grid Workflow 18(10), 1067–1100 (2006)CrossRefGoogle Scholar
  13. 13.
    Oinn, T., Li, P., Kell, D.B., Goble, C., Goderis, A., Greenwood, M., Hull, D., Stevens, R., Turi, D., Zhao, J.: Taverna/myGrid: Aligning a Workflow System with the Life Sciences Community. In: Workflows for e-Science, pp. 300–319. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. Journal of computational and graphical statistics 5(3), 399–414 (1996)CrossRefGoogle Scholar
  15. 15.
    Urbanek, S.: Rserve – a fast way to provide r functionality to applications. In: Hornik, K., Leisch, F., Zeileis, A. (eds.) Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), Vienna, Austria, pp. 20–22 (2003)Google Scholar
  16. 16.
    Barga, R., Gannon, D.: Scientific versus Business Workflows. In: Workflows for e-Science, pp. 258–275. Springer, Heidelberg (2007)Google Scholar
  17. 17.
    Jablonski, S., Bussler, C.: Workflow management. Modeling concepts, architecture and implementation. Modeling concepts. Thomson, London, UK (1996)Google Scholar
  18. 18.
    van der Aalst, W., van Hee, K.: Workflow management: models, methods, and systems. The MIT Press, Cambridge (2002)Google Scholar
  19. 19.
    van der Aalst, W.: The application of Petri nets to workflow management. The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)CrossRefGoogle Scholar
  20. 20.
    Belhajjame, K., Embury, S., Paton, N.: On characterising and identifying mismatches in scientific workflows. In: Leser, U., Naumann, F., Eckman, B. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 240–247. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Reisig, W.: A Primer in Petri Net Design. Springer, Berlin (1992)MATHGoogle Scholar
  22. 22.
    Dourish, P.: Process descriptions as organisational accounting devices: the dual use of workflow technologies. In: Ellis, C., Zigurs, I. (eds.) Proceedings of the 2001 International ACM SIGGROUP Conference on Supporting Group Work, Boulder, Colorado, USA, vol. 60, pp. 52–60. ACM Press, New York (2001)CrossRefGoogle Scholar
  23. 23.
    Pautasso, C., Alonso, G.: The JOpera visual composition language. Journal of Visual Languages and Computing 16(1–2), 119–152 (2005)CrossRefGoogle Scholar
  24. 24.
    Rauwerda, H., Roos, M., Hertzberger, B., Breit, T.: The promise of a virtual lab in drug discovery. Drug Discovery Today 11(5-6), 228–236 (2006)CrossRefGoogle Scholar
  25. 25.
    van der Vet, P., Kulyk, O., Wassink, I., Fikkert, F., Rauwerda, H., van Dijk, E., van der Veer, G., Breit, T., Nijholt, A.: Smart environments for collaborative design, implementation, and interpretation of scientific experiments. In: Huang, T., Nijholt, A., Pantic, M., Pentland, A. (eds.) Workshop on AI for Human Computing (AI4HC), Hyderabad, India, pp. 79–86 (2007)Google Scholar
  26. 26.
    van der Aalst, W., ter Hofstede, A.: YAWL: Yet another workflow language. Information Systems 30(4), 245–275 (2005)CrossRefGoogle Scholar
  27. 27.
    Shields, M.: Control- Versus Data-Driven Workflows. In: Workflows for e-Science, pp. 258–275. Springer, Heidelberg (2007)Google Scholar
  28. 28.
    Barthelmess, P., Wainer, J.: Workflow systems: a few definitions and a few suggestions. In: Comstock, N., Ellis, C. (eds.) Proceedings of the Conference on Organizational Computing Systems (COOCS 1995), Milpitas, California, USA, pp. 138–147 (1995)Google Scholar
  29. 29.
    van der Aalst, W., Aldred, L., Dumas, M., ter Hofstede, A.: Design and implementation of the YAWL system. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 142–159. Springer, Heidelberg (2004)Google Scholar
  30. 30.
    van der Aalst, W., ter Hofstede, A.: Workflow patterns: On the expressive power of (Petri-net-based) workflow languages. In: Jensen, K. (ed.) Fourth Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPn 2002), Aarhus, Denmark, DAIMI, pp. 1–20 (2002)Google Scholar
  31. 31.
    Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove (1999)Google Scholar
  32. 32.
    Wroe, C., Goble, C., Greenwood, M., Lord, P., Miles, S., Papay, J., Payne, T., Moreau, L.: Automating experiments using semantic data on a bioinformatics grid. IEEE Intelligent Systems 19(1), 48–55 (2004)CrossRefGoogle Scholar
  33. 33.
    Wilkinson, M.D., Links, M.: BioMOBY: an open source biological web services proposal. Brief Bioinform. 3(4), 331–341 (2002)CrossRefGoogle Scholar
  34. 34.
    The Workflow Management Coalition: Workflow process definition interface – xml process definition language. Technical Report WFMC-TC-1025, The Workflow Management Coalition (2002)Google Scholar
  35. 35.
    Oinn, T., Addis, M., Ferris, J., Marvin, D., Greenwood, M., Goble, C., Wipat, A., Li, P., Carver, T.: Delivering web service coordination capability to users. In: Feldman, S., Uretsky, M. (eds.) Proceedings of the 13th international conference on World Wide Web, pp. 438–439. ACM Press, New York (2004)Google Scholar
  36. 36.
    Prior, C.: Workflow and Process Management. In: The Workflow Handbook 2003, pp. 17–25. Future Strategies Inc. (2003)Google Scholar
  37. 37.
    Altintas, I., Berkley, C., Jaeger, E., Ludäscher, B., Mock, S.: Kepler: An extensible system for design and execution of scientific workflows. In: Hatzopoulos, M., Manolopoulos, Y. (eds.) 16th International Conference on Scientific and Statistical Database Management (SSDBM 2004), Santorini Island, Greece, pp. 423–424 (2004)Google Scholar
  38. 38.
    Bowers, S., Ludäscher, B.: Actor-oriented design of scientific workflows. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, O. (eds.) Conceptual Modeling – ER 2005, Klagenfurt, Austria. LNCS, vol. 3716, pp. 369–384. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  39. 39.
    Greenwood, M., Goble, C., Stevens, R., Zhao, J., Addis, M., Marvin, D., Moreau, L., Oinn, T.: Provenance of e-Science experiments - experience from bioinformatics. In: Cox, S. (ed.) Proceedings of UK e-Science All Hands Meeting 2003, Nottingham, UK, pp. 223–226 (2003)Google Scholar
  40. 40.
    Reuss, T., Vossen, G., Weske, M.: Modeling samples processing in laboratory environments as scientific workflows. In: Wagner, R.R. (ed.) 8th International Workshop on Database and Expert Systems Applications (DEXA 1997), pp. 49–54. IEEE Computer Society, Los Alamitos (1997)Google Scholar
  41. 41.
    Gallopoulos, E., Houstis, E., Rice, J.: Computer as thinker/doer: Problem-solving environments for computational science. IEEE Computational Science and Engineering 1(2), 11–23 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ingo Wassink
    • 1
  • Han Rauwerda
    • 2
  • Paul van der Vet
    • 1
  • Timo Breit
    • 2
  • Anton Nijholt
    • 1
  1. 1.Human Media Interaction GroupUniversity of Twente 
  2. 2.Micro Array DepartmentUniversity of Amsterdam 

Personalised recommendations