Concept Similarity and Related Categories in SearchSleuth

  • Frithjof Dau
  • Jon Ducrou
  • Peter Eklund
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5113)

Abstract

SearchSleuth is a program developed to experiment with the automated local analysis of Web search using formal concept analysis. SearchSleuth extends a standard search interface to include a conceptual neighborhood centered on a formal concept derived from the initial query. This neighborhood of the concept derived from the search terms is decorated with its upper and lower neighbors representing more general and specialized concepts respectively. In SearchSleuth, the notion of related categories – which are themselves formal concepts – is also introduced. This allows the retrieval focus to shift to a new formal concept called a sibling. This movement across the concept lattice needs to relate one formal concept to another in a principled way. This paper presents the issues concerning exploring and ordering the space of related categories.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carpineto, C., Romano, G.: Exploiting the potential of concept lattices for information retrieval with credo. Journal of Universal Computer Science 10(8), 985–1013 (2004)Google Scholar
  2. 2.
    Koester, B.: FooCA - Web Information Retrieval with Formal Concept Analysis. Diploma, Technische Universität Dresden (2006)Google Scholar
  3. 3.
    Koester, B.: Conceptual knowledge processing with google. In: Contributions to ICFCA 2006, pp. 178–183 (2005)Google Scholar
  4. 4.
    Ducrou, J., Eklund, P.: Searchsleuth: the conceptual neighbourhood of an internet query. In: 5th International Conference on Concept Lattices and Their Applications (CLA 2007), pp. 249–260 (2007), http://www.CEUR-WS.Vol-331.Ducrou.pdf
  5. 5.
    Kim, M., Compton, P.: Formal Concept Analysis for Domain-Specific Document Retrieval Systems. In: Australian Joint Conference on Artificial Intelligence, pp. 237–248 (2001)Google Scholar
  6. 6.
    Kim, M., Compton, P.: The perceived utility of standard ontologies in document management for specialized domains. International Journal of Human-Computer Studies 64(1), 15–26 (2006)CrossRefGoogle Scholar
  7. 7.
    Ducrou, J., Vormbrock, B., Eklund, P.: FCA-based Browsing and Searching of a Collection of Images. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 203–214. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Ducrou, J., Eklund, P.: Faceted document navigation using conceptual structures. In: Hitzler, P., Schärf, H. (eds.) Conceptual Structures in Practice, pp. 251–278. CRC Press, Boca Raton (2008)Google Scholar
  9. 9.
    Ducrou, J., Eklund, P.: An intelligent user interface for browsing and search mpeg-7 images using concept lattices. International Journal of Foundations of Computer Science 19(2), 359–381 (2008)CrossRefGoogle Scholar
  10. 10.
    Lengnink, K.: Ahnlichkeit als Distanz in Begriffsverbänden. In: Stumme, G., Wille, R. (eds.) Begriffliche Wissensverarbeitung: Methoden und Anwendungen, pp. 57–71. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Saquer, J., Deogun, J.S.: Concept aproximations based on rough sets and similarity measures. Int. J. Appl. Math. Comput. Sci. 11, 655–674 (2001)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Frithjof Dau
    • 1
  • Jon Ducrou
    • 1
  • Peter Eklund
    • 1
  1. 1.School of Information Systems and TechnologyUniversity of WollongongWollongongAustralia

Personalised recommendations