Circulations, Fuzzy Relations and Semirings

  • Roland Glück
  • Bernhard Möller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5133)

Abstract

Circulations are similar to flows in capacity-constrained networks, with the difference that they also observe lower bounds and, unlike flows, are not directed from a source to a sink. We give a new description of circulations in networks using a technique introduced by Kawahara; he applied the same methods to network flows. We show the power and flexibility of his approach in a new application, refining it at the same time by introducing the concept of test relations. Furthermore we will give algebraic formulations of a generic algorithm for computing a flow in a network with lower bounds and a sufficient and necessary criterion for the existence of a circulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AMO]
    Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  2. [Glü]
    Glück, R.: Network Flows, Semirings and Fuzzy Relations. Institut für Informatik, Universität Augsburg, Tech. Rep, -01 (2008), http://www.opus-bayern.de/uni-augsburg/volltexte/2008/726/
  3. [GlüI]
    Glück, R.: Import Networks, Fuzzy Relations and Semirings. In: Berghammer, R., Möller, B., Struth, G. (eds.) Relations and Kleene Algebra in Computer Science — PhD Programme Proceedings, RelMiCS10/AKA5, Frauenwörth, Germany, April 7 – April 11, 2008. Institut für Informatik, Universität Augsburg, Technical Report 2008-04, pp. 58–62 (2008)Google Scholar
  4. [GTT]
    Goldberg, A., Tardos, E., Tarjan, R.: Network Flow Algorithms. In: Korte, B., Lovasz, L., Prömel, H., Schrijver, A. (eds.) Algorithms and Combinatorics. Paths, Rows, and VLSI-Layout, vol. 9, pp. 101–164. Springer, Heidelberg (1990)Google Scholar
  5. [HS]
    Höfner, P., Struth, G.: Automated Reasoning in Kleene Algebra. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 279–294. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. [Jun]
    Jungnickel, D.: Graphs, Networks and Algorithms, 2nd edn. Springer, Heidelberg (2005)MATHGoogle Scholar
  7. [Kaw]
    Kawahara, Y.: On the Cardinality of Relations. In: Schmidt, R.A. (ed.) RelMiCS/AKA 2006. LNCS, vol. 4136, pp. 251–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. [KozKA]
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110(2), 366–390 (1994)MATHCrossRefMathSciNetGoogle Scholar
  9. [KozT]
    Kozen, D.: Kleene algebra with tests. ACM Transactions on Programming Languages and Systems 19(3), 427–443 (1997)CrossRefGoogle Scholar
  10. [MB]
    Manes, E., Benson, D.: The Inverse Semigroup of a Sum-Ordered Semiring. Semigroup Forum 31, 129–152 (1985)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Roland Glück
    • 1
  • Bernhard Möller
    • 1
  1. 1.Institut für InformatikUniversität AugsburgAugsburgGermany

Personalised recommendations