Extensible Universes for Object-Oriented Data Models

  • Achim D. Brucker
  • Burkhart Wolff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5142)

Abstract

We present a datatype package that enables the shallow embedding technique to object-oriented specification and programming languages. This datatype package incrementally compiles an object-oriented data model to a theory containing object-universes, constructors, accessors functions, coercions between dynamic and static types, characteristic sets, their relations reflecting inheritance, and the necessary class invariants. The package is conservative, i.e., all properties are derived entirely from axiomatic definitions. As an application, we use the package for an object-oriented core-language called imp++, for which correctness of a Hoare-Logic with respect to an operational semantics is proven.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, P.B.: Introduction to Mathematical Logic and Type Theory: To Truth through Proof, 2nd edn. Kluwer Academic Publishers, Dordrecht (2002)MATHGoogle Scholar
  2. 2.
    Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.) Construction and Analysis of Safe, Secure, and Interoperable Smart Devices 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Basin, D.A., Kuruma, H., Takaragi, K., Wolff, B.: Verification of a signature architecture with HOL-Z. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) Formal Methods 2005. LNCS, vol. 3582, pp. 269–285. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Berghofer, S., Wenzel, M.T.: Inductive Datatypes in HOL – Lessons Learned in Formal-Logic Engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) Theorem Proving in Higher Order Logics 1999. LNCS, vol. 1690. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Bierman, G.M., Parkinson, M.J.: Effects and effect inference for a core Java calculus. Electronic Notes in Theoretical Computer Science 82(7), 1–26 (2003)CrossRefGoogle Scholar
  6. 6.
    Brucker, A.D.: An Interactive Proof Environment for Object-oriented Specifications. Ph.d. thesis, ETH Zurich, 2007. ETH Dissertation No. 17097Google Scholar
  7. 7.
    Brucker, A.D., Rittinger, F., Wolff, B.: HOL-Z 2.0: A proof environment for Z-specifications. Journal of Universal Computer Science 9(2), 152–172 (2003)Google Scholar
  8. 8.
    Brucker, A.D., Wolff, B.: The HOL-OCL book. Tech. Rep. 525, ETH Zurich (2006)Google Scholar
  9. 9.
    Brucker, A.D., Wolff, B.: HOL-OCL – A Formal Proof Environment for UML-OCL. In: Fiadeiro, J., Inverardi, P. (eds.) Fundamental Approaches to Software Engineering FASE 2008, vol. 4961, pp. 97–100. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Drossopoulou, S., Eisenbach, S.: Describing the semantics of Java and proving type soundness. In: Alves-Foss, J. (ed.) Formal Syntax and Semantics of Java. LNCS, vol. 1523, pp. 41–82. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Flatt, M., Krishnamurthi, S., Felleisen, M.: A programmer’s reduction semantics for classes and mixins. In: Alves-Foss, J. (ed.) Formal Syntax and Semantics of Java. LNCS, vol. 1523, pp. 241–269. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environment for higher order logic. Cambridge University Press, New York (1993)MATHGoogle Scholar
  13. 13.
    Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus for Java and GI. ACM Transactions on Programming Languages and Systems 23(3), 396–450 (2001)CrossRefGoogle Scholar
  14. 14.
    Leino, K.R.M., Müller, P.: Modular verification of static class invariants. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) Formal Methods 2005. LNCS, vol. 3582, pp. 26–42. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Marché, C., Paulin-Mohring, C.: Reasoning about Java programs with aliasing and frame conditions. In: Hurd, J., Melham, T. (eds.) Theorem Proving in Higher Order Logics 2005. LNCS, vol. 3603, pp. 179–194. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Melham, T.F.: A package for inductive relation definitions in HOL. In: Archer, M., Joyce, J.J., Levitt, K.N., Windley, P.J. (eds.) International Workshop on the HOL Theorem Proving System and its Applications (TPHOLs), pp. 350–357. IEEE Computer Society Press, Los Alamitos (1992)Google Scholar
  17. 17.
    Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF. Journal of Functional Programming 9(2), 191–223 (1999)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Naraschewski, W., Wenzel, M.: Object-Oriented Verification Based on Record Subtyping in Higher-Order Logic. In: Grundy, J., Newey, M. (eds.) Theorem Proving in Higher Order Logics 1998. LNCS, vol. 1479, pp. 349–366. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Nipkow, T.: Winskel is (almost) right: Towards a mechanized semantics textbook. Formal Aspects of Computing 10(2), 171–186 (1998)CrossRefMATHGoogle Scholar
  20. 20.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)MATHGoogle Scholar
  21. 21.
    Nipkow, T., von Oheimb, D.: Javaight is type-safe—definitely. In: ACM Symp. Principles of Programming Languages POPL, pp. 161–170. ACM Press, New York (1998)CrossRefGoogle Scholar
  22. 22.
    Unified modeling language specification (version 1.5) (2003), Available as OMG document formal/03-03-01Google Scholar
  23. 23.
    Paulson, L.C.: A fixedpoint approach to (co)inductive and (co)datatype definitions. In: Plotkin, G., Stirling, C., Tofte, M. (eds.) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 187–211. MIT Press, Cambridge (2000)Google Scholar
  24. 24.
    Smith, G., Kammüller, F., Santen, T.: Encoding Object-Z in Isabelle/HOL. In: Bert, D., P. Bowen, J., C. Henson, M., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 82–99. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    von Oheimb, D., Nipkow, T.: Hoare logic for NanoJava: Auxiliary variables, side effects, and virtual methods revisited. In: Eriksson, L.-H., Lindsay, P.A. (eds.) Formal Methods Europe 2002. LNCS, vol. 2391, pp. 89–105. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Winskel, G.: The Formal Semantics of Programming Languages. MIT Press, Cambridge (1993)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Achim D. Brucker
    • 1
  • Burkhart Wolff
    • 2
  1. 1.SAP ResearchKarlsruheGermany
  2. 2.Universität des SaarlandesSaarbrückenGermany

Personalised recommendations