Regional Logic for Local Reasoning about Global Invariants

  • Anindya Banerjee
  • David A. Naumann
  • Stan Rosenberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5142)


Shared mutable objects pose grave challenges in reasoning, especially for data abstraction and modularity. This paper presents a novel logic for error-avoiding partial correctness of programs featuring shared mutable objects. Using a first order assertion language, the logic provides heap-local reasoning about mutation and separation, via ghost fields and variables of type ‘region’ (finite sets of object references). A new form of modifies clause specifies write, read, and allocation effects using region expressions; this supports effect masking and a frame rule that allows a command to read state on which the framed predicate depends. Soundness is proved using a standard program semantics. The logic facilitates heap-local reasoning about object invariants: disciplines such as ownership are expressible but not hard-wired in the logic.


Region Expression Proof Obligation Reference Type Ownership Type Global Invariant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-oriented programs. In: ACM Symposium on Principles of Programming Languages (POPL) (2006)Google Scholar
  2. 2.
    Banerjee, A., Naumann, D.A.: Ownership confinement ensures representation independence for object-oriented programs. Journal of the ACM 52(6), 894–960 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Banerjee, A., Naumann, D., Rosenberg, S.: Regional logic for local reasoning about global invariants,
  4. 4.
    Banerjee, A., Naumann, D., Rosenberg, S.: Towards a logical account of declassification. In: ACM Workshop on Programming Languages and Analysis for Security (2007)Google Scholar
  5. 5.
    Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification of object-oriented programs with invariants. Journal of Object Technology 3(6), 27–56 (2004)Google Scholar
  6. 6.
    Bierman, G., Parkinson, M.: Separation logic and abstraction. In: ACM Symposium on Principles of Programming Languages (POPL), pp. 247–258 (2005)Google Scholar
  7. 7.
    Birkedal, L., Torp-Smith, N., Yang, H.: Semantics of separation-logic typing and higher-order frame rules. In: IEEE Symp. on Logic in Computer Science (LICS) (2005)Google Scholar
  8. 8.
    Bornat, R.: Proving pointer programs in Hoare logic. In: MPC (2000)Google Scholar
  9. 9.
    Calcagno, C., O’Hearn, P., Bornat, R.: Program logic and equivalence in the presence of garbage collection. Theoretical Comput. Sci. 298(3), 557–581 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cameron, N.R., Drossopoulou, S., Noble, J., Smith, M.J.: Multiple ownership. In: OOPSLA (2007)Google Scholar
  11. 11.
    Clarke, D., Drossopoulou, S.: Ownership, encapsulation and the disjointness of type and effect. In: OOPSLA, pp. 292–310 (November 2002)Google Scholar
  12. 12.
    Drossopoulou, S., Francalana, A., Müller, P.: A unified framework for verification techniques for object invariants. In: FOOL (2008)Google Scholar
  13. 13.
    Hoare, C.A.R.: Proofs of correctness of data representations. Acta. Inf. 1, 271–281 (1972)zbMATHCrossRefGoogle Scholar
  14. 14.
    Kassios, I.T.: Dynamic framing: Support for framing, dependencies and sharing without restriction. In: Formal Methods: International Conference of Formal Methods Europe (2006)Google Scholar
  15. 15.
    Leavens, G.T., Naumann, D.A., Rosenberg, S.: Preliminary definition of core JML. Technical Report CS Report 2006-07, Stevens Institute of Technology (2006)Google Scholar
  16. 16.
    Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–516. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Leino, K.R.M., Nelson, G.: Data abstraction and information hiding. ACM Trans. Prog. Lang. Syst. 24(5), 491–553 (2002)CrossRefGoogle Scholar
  18. 18.
    Müller, P.: Modular Specification and Verification of Object-Oriented Programs. In: Müller, P. (ed.) Modular Specification and Verification of Object-Oriented Programs. LNCS, vol. 2262. Springer, Heidelberg (2002)Google Scholar
  19. 19.
    Müller, P., Rudich, A.: Ownership transfer in Universe Types. In: ACM Conf. on Object-Oriented Programming Languages, Systems, and Applications (OOPSLA) (2007)Google Scholar
  20. 20.
    Nanevski, A., Morrisett, G., Birkedal, L.: Polymorphism and separation in Hoare type theory. In: ICFP (2006)Google Scholar
  21. 21.
    Naumann, D.A.: An admissible second order frame rule in region logic. Technical Report CS Report 2008-02, Stevens Institute of Technology (2008)Google Scholar
  22. 22.
    Naumann, D.A., Barnett, M.: Towards imperative modules: Reasoning about invariants and sharing of mutable state. Theoretical Comput. Sci. 365, 143–168 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    O’Hearn, P., Yang, H., Reynolds, J.: Separation and information hiding. In: ACM Symposium on Principles of Programming Languages (POPL), pp. 268–280 (2004)Google Scholar
  24. 24.
    Parkinson, M.: Class invariants: the end of the road. In: International Workshop on Aliasing, Confinement and Ownership (2007)Google Scholar
  25. 25.
    Pierik, C., de Boer, F.S.: A proof outline logic for object-oriented programming. Theoretical Comput. Sci. 343, 413–442 (2005)zbMATHCrossRefGoogle Scholar
  26. 26.
    Smans, J., Jacobs, B., Piessens, F., Schulte, W.: An automatic verifier for java-like programs based on dynamic frames. In: FASE (2008)Google Scholar
  27. 27.
    Smith, M., Drossopoulou, S.: Cheaper reasoning with ownership types. In: International Workshop on Aliasing, Confinement and Ownership (2003)Google Scholar
  28. 28.
    Tofte, M., Talpin, J.-P.: Implementation of the Typed Call-by-Value lambda-Calculus using a Stack of Regions. In: POPL (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Anindya Banerjee
    • 1
  • David A. Naumann
    • 2
  • Stan Rosenberg
    • 2
  1. 1.Kansas State University, Manhattan KS 66506 USA and, Microsoft ResearchRedmondUSA
  2. 2.Stevens Institute of TechnologyHobokenUSA

Personalised recommendations