Maximal Termination

  • Carsten Fuhs
  • Jürgen Giesl
  • Aart Middeldorp
  • Peter Schneider-Kamp
  • René Thiemann
  • Harald Zankl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5117)

Abstract

We present a new approach for termination proofs that uses polynomial interpretations (with possibly negative coefficients) together with the “maximum” function. To obtain a powerful automatic method, we solve two main challenges: (1) We show how to adapt the latest developments in the dependency pair framework to our setting. (2) We show how to automate the search for such interpretations by integrating “ max ” into recent SAT-based methods for polynomial interpretations. Experimental results support our approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal termination. Technical Report AIB-2008-03, RWTH Aachen, Germany (2008), http://aib.informatik.rwth-aachen.de
  4. 4.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Giesl, J., Thiemann, R., Swiderski, S., Schneider-Kamp, P.: Proving termination by bounded increase. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 443–459. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Hardin, T., Laville, A.: Proof of termination of the rewriting system SUBST on CCL. Theoretical Computer Science 46(2,3), 305–312 (1986)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Information and Computation 199(1,2), 172–199 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hirokawa, N., Middeldorp, A.: Tyrolean Termination Tool: Techniques and features. Information and Computation 205(4), 474–511 (2007)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hong, H., Jakuš, D.: Testing positiveness of polynomials. Journal of Automated Reasoning 21(1), 23–38 (1998)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Koprowski, A.: TPA: Termination proved automatically. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 257–266. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Lankford, D.: On proving term rewriting systems are Noetherian. Technical Report MTP-3, Louisiana Technical University, Ruston, LA, USA (1979)Google Scholar
  14. 14.
    Marché, C., Zantema, H.: The termination competition. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 303–313. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Nguyen, M., De Schreye, D., Giesl, J., Schneider-Kamp, P.: Polytool: Polynomial interpretations as a basis for termination analysis of logic programs. KU Leuven (2008)Google Scholar
  16. 16.
    Toyama, Y.: Counterexamples to the termination for the direct sum of term rewriting systems. Information Processing Letters 25, 141–143 (1987)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
  18. 18.
    Zantema, H.: Termination. In: Terese (ed.) Term Rewriting Systems, ch. 6, pp. 181–259. Cambridge University Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carsten Fuhs
    • 1
  • Jürgen Giesl
    • 1
  • Aart Middeldorp
    • 2
  • Peter Schneider-Kamp
    • 1
  • René Thiemann
    • 2
  • Harald Zankl
    • 2
  1. 1.LuFG Informatik 2RWTH Aachen UniversityGermany
  2. 2.Institute of Computer ScienceUniversity of InnsbruckAustria

Personalised recommendations