• Christian Sternagel
  • Aart Middeldorp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5117)


In 2006 Jambox, a termination prover developed by Endrullis, surprised the termination community by winning the string rewriting division and almost beating AProVE in the term rewriting division of the international termination competition. The success of Jambox for strings is partly due to a very special case of semantic labeling. In this paper we integrate this technique, which we call root-labeling, into the dependency pair framework. The result is a simple processor with help of which T T T 2 surprised the termination community in 2007 by producing the first automatically generated termination proof of a string rewrite system with non-primitive recursive complexity (Touzet, 1998). Unlike many other recent termination methods, the root-labeling processor is trivial to automate and completely unsuitable for producing human readable proofs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  3. 3.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Endrullis, J.: Jambox (2005),
  5. 5.
    Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 574–588. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: SAT solving for termination analysis with polynomial interpretations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Information and Computation 199(1,2), 172–199 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hirokawa, N., Middeldorp, A.: Predictive labeling. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 313–327. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Hofbauer, D.: MultumNonMulta (2006),
  13. 13.
    Koprowski, A.: TPA: Termination proved automatically. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 257–266. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Koprowski, A., Middeldorp, A.: Predictive labeling with dependency pairs using SAT. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 410–425. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Koprowski, A., Zantema, H.: Recursive path ordering for infinite labelled rewrite systems. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 332–346. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2 (2007),
  17. 17.
    Middeldorp, A., Ohsaki, H., Zantema, H.: Transforming termination by self-labelling. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 373–386. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press, Cambridge (2003)Google Scholar
  19. 19.
    Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting. PhD thesis, RWTH Aachen, Technical report AIB-2007-17 (2007)Google Scholar
  20. 20.
    Thiemann, R., Middeldorp, A.: Innermost termination of rewrite systems by labeling. In: Giesel, J. (ed.) WRS 2007. ENTCS, vol. 204, pp. 3–19 (2008)Google Scholar
  21. 21.
    Touzet, H.: A complex example of a simplifying rewrite system. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 507–517. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Toyama, Y.: Counterexamples to the termination for the direct sum of term rewriting systems. Information Processing Letters 25, 141–143 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Waldmann, J.: Matchbox: A tool for match-bounded string rewriting. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 85–94. Springer, Heidelberg (2004)Google Scholar
  24. 24.
    Zantema, H.: Termination of term rewriting by semantic labelling. Fundamenta Informaticae 24, 89–105 (1995)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Zantema, H.: TORPA: Termination of rewriting proved automatically. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 95–104. Springer, Heidelberg (2004)Google Scholar
  26. 26.
    Zantema, H., Waldmann, J.: Termination by quasi-periodic interpretations. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 404–418. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christian Sternagel
    • 1
  • Aart Middeldorp
    • 1
  1. 1.Institute of Computer ScienceUniversity of InnsbruckAustria

Personalised recommendations