Advertisement

Tree Automata for Non-linear Arithmetic

  • Naoki Kobayashi
  • Hitoshi Ohsaki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5117)

Abstract

Tree automata modulo associativity and commutativity axioms, called AC tree automata, accept trees by iterating the transition modulo equational reasoning. The class of languages accepted by monotone AC tree automata is known to include the solution set of the inequality \(x \times y \geqslant z\), which implies that the class properly includes the AC closure of regular tree languages. In the paper, we characterize more precisely the expressiveness of monotone AC tree automata, based on the observation that, in addition to polynomials, a class of exponential constraints (called monotone exponential Diophantine inequalities) can be expressed by monotone AC tree automata with a minimal signature. Moreover, we show that a class of arithmetic logic consisting of monotone exponential Diophantine inequalities is definable by monotone AC tree automata. The results presented in the paper are obtained by applying our novel tree automata technique, called linearly bounded projection.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  2. 2.
    Boneva, I., Talbot, J.-M., Tison, S.: Expressiveness of a Spatial Logic for Trees. In: Proc. of 20th LICS, Chicago (USA), pp. 280–289. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  3. 3.
    Comon-Lundh, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications, draft (2005), http://www.grappa.univ-lille3.fr/tata
  4. 4.
    Dal Zilio, S., Lugiez, D.: XML Schema, Tree Logic and Sheaves Automata. Applicable Algebra in Engineering, Communication and Computing 17, 337–377 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ginsburg, S., Spanier, E.H.: Semigroups, Presburger Formulas, and Languages. Pacific Journal of Mathematics 16, 285–296 (1966)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Ginsburg, S.: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York (1966)zbMATHGoogle Scholar
  7. 7.
    Hack, M.H.T.: Decidability Questions for Petri Nets, Ph.D. thesis, Massachusetts Institute of Technology, USA (1976)Google Scholar
  8. 8.
    Henzinger, T.A.: The Theory of Hybrid Automata. In: Proc. of 11th LICS, New Brunswick (USA). IEEE Computer Society, Los Alamitos (1996) (Extended version), http://mtc.epfl.ch/~tah/Publications Google Scholar
  9. 9.
    Hinman, P.G.: Fundamentals of Mathematical Logic. A K Peters (2005)Google Scholar
  10. 10.
    Kobayashi, N., Ohsaki, H.: Tree Automata for Non-Linear Arithmetic, draft (February 2008), http://staff.aist.go.jp/hitoshi.ohsaki/
  11. 11.
    Kudlek, M., Mitrana, V.: Normal Forms of Grammars, Finite Automata, Abstract Families, and Closure Properties of Multiset Languages. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 135–146. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Landweber, L.H.: Properties of Vector Addition Systems, Technical Report 258, University of Wisconsin-Madison, USA (1975)Google Scholar
  13. 13.
    Lugiez, D.: Multitree Automata That Count. TCS 333, 225–263 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Matiyasevich, Y.: Hilbert’s Tenth Problem. MIT Press, Cambridge (1993)Google Scholar
  15. 15.
    Ohsaki, H., Talbot, J.-M., Tison, S., Roos, Y.: Monotone AC-Tree Automata. In: VMCAI 2006. LNCS (LNAI), vol. 3855, pp. 337–351. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Ohsaki, H., Seki, H., Takai, T.: Recognizing Boolean Closed A-Tree Languages with Membership Conditional Rewriting Mechanism. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 483–498. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Ohsaki, H.: Beyond Regularity: Equational Tree Automata for Associative and Commutative Theories. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 539–553. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Parikh, R.: On Context-Free Languages. JACM 13, 570–581 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Seidl, H., Schwentick, T., Muscholl, A.: Numerical Document Queries. In: Proc. of 22nd PODS, SanDiego (USA), pp. 155–166. ACM, New York (2003)Google Scholar
  20. 20.
    Thatcher, J.W.: Characterizing Derivation Trees of Context-Free Grammars Through a Generalization of Automata Theory. Journal of Computer and System Sciences 1, 317–322 (1967)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Verma, K.N., Goubault-Larrecq, J.: Alternating Two-Way AC-Tree Automata. Information and Computation 205, 817–869 (2007)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Naoki Kobayashi
    • 1
  • Hitoshi Ohsaki
    • 2
  1. 1.Tohoku UniversityJapan
  2. 2.National Institute of Advanced Industrial Science and TechnologyJapan

Personalised recommendations